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In this talk we consider the passive imaging or inverse source imaging problem

We seek to locate sources inside an imaging window of interest
Using as data the field recorded on an array of receivers
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Inverse problems in wave propagation

Sensing matrix formalism
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G(r⃗1, z⃗i)

z⃗i

We introduce the N ×K matrix

G = [g(z⃗1) · · · g(z⃗K)]

where each column g(z⃗i) is the Green’s function vector

g(z⃗i) = [G(r⃗1, z⃗i), G(r⃗2, z⃗i), . . . G(r⃗N , z⃗i)]
T

corresponding to N measurements at all receivers and frequencies when in the
random medium, there is a single source at position z⃗i.
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Inverse problems in wave propagation

Wave propagation

The Green’s function satisfies the wave equation

∆G(z⃗, r⃗;ω) + κ2 n2(z⃗)G(z⃗, r⃗;ω) = δ(z⃗ − r⃗),

where κ = ω/c0 is the wavenumber, c0 is a constant reference wave speed. The
random index of refraction is n(z⃗) = c0/c(z⃗) with local wave speed c(z⃗).

In a homogeneous medium, c(z⃗) ≡ c0 for any location z⃗ and, in this case,
G(z⃗, r⃗;ω) = G0(z⃗, r⃗;ω), where

G0(z⃗, r⃗;ω) =
exp(i κ |z⃗ − r⃗|)

4π|z⃗ − r⃗|
.
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Imaging in random media

Wave propagation in random media

We consider wave propagation for long distances in weakly heterogeneous
media. In that case the perturbations induced by the medium
inhomogeneities accumulate and have an order one effect.
The random fluctuations of the wave speed are modeled as

1

c2(z⃗)
=

1

c20

(
1 + σµ(

z⃗

ℓ
)

)
.

c0 denotes the average speed
σ denotes the strength of the fluctuations and ℓ is the correlation length
µ(·) is a zero mean stationary random process.
We use the random travel time model which characterizes wave propagation
in the high-frequency regime in random media with weak fluctuations σ ≪ 1
and large correlation lengths ℓ compared to the wavelength λ.
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Imaging in random media

Random travel time model

The Green’s function between two points z⃗ and r⃗ at a distance L from each
other such that L ≫ ℓ ≫ λ is given by

G(z⃗, r⃗;ω) = G0(z⃗, r⃗;ω) exp [iων(z⃗, r⃗)].

G0 is the Green’s function in a homogeneous medium with speed c0

ν(z⃗, r⃗) is the random function

ν(z⃗, r⃗) =
σ|z⃗ − r⃗|
2c0

∫ 1

0

ds µ

(
r⃗

ℓ
+ (z⃗ − r⃗)

s

ℓ

)
,

which accounts for phase distortions induced by the medium’s fluctuations.
σ0 = λ0√

ℓL
is a characteristic strength of the medium’s fluctuations for which

the standard deviation of the random phase fluctuations is O(1).
We define the strength of the fluctuations in terms of σ0 by introducing the
dimensionless parameter σ̃ = σ

σ0
.
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Imaging in random media

Imaging in homogeneous media

r⃗1

r⃗N

L

a
r⃗j

IW

xi′′ G0(r⃗j , z⃗i′′ )

xi G0(r⃗j , z⃗i)

xi′ G0(r⃗j , z⃗i′ )

z⃗i

z⃗i′

z⃗i′′

In a homogeneous medium the data are
y = G0 x

x is a vector whose jth component represents the complex amplitude of the
source at location z⃗j in the image window, j = 1, . . . ,K.
The sensing matrix G0 is known. One needs regularization because usually
N ≪ K. ℓ2 or ℓ1 methods can be successfully used.
Kirchhoff migration image is obtained by applying G0

∗ to the data
back-propagating the data in the homogeneous medium
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Imaging in random media

Imaging in random media

r⃗1

r⃗N

xi G(r⃗j , z⃗i)

L

a
r⃗j
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xi′′ G(r⃗j , z⃗i′′ )

xi′ G(r⃗j , z⃗i′ )

z⃗i′′

z⃗i

z⃗i′

In random media the data are
y = G x ,

The measurement matrix G is unknown.
An option is to approximate G ∼ G0, where G0 is the known sensing matrix
in the homogeneous medium.
Kirchhoff migration image is obtained by applying G0

∗ to the data
back-propagating the data in the homogeneous medium

C. Tsogka DL for imaging in complex media UC Merced 10 / 33



Imaging in random media

Imaging in random media
The G∗G matrix

G∗G G∗
0G0 G∗

0G
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Imaging in random media

Imaging in random media
Coherent Interferometry

Our model for the sensing matrix is for a fictitious medium (homogeneous
with no fluctuations) ⇝ phases are not accounted for correctly ⇝ instability
in the reconstruction

To stabilize the imaging process we form cross-correlations and restrict the
cc-data to nearby frequency and receiver offsets : |ω − ω′| ≤ Ωd and
|r − r′| ≤ Xd.
Statistical stability means the variance of the image is small compared to its
mean square, with respect to the realizations of the random medium. It
comes at the cost of loss in resolution :

cross-range : λL/a⇝ λL/Xd

range (depth) : c0/B ⇝ c0/Ωd
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Imaging in random media

Statistical Stability

Statistical stability for cross-correlation data has been studied in the framework of
Coherent Interferometry (CINT) which amounts to back propagating cc-data,
rather than the raw data.

L. Borcea, G. Papanicolaou and C.T, Interferometric array imaging in clutter,
Inverse Problems, 21 (2005), pp. 1419-1460.

L. Borcea, G. Papanicolaou and C.T., Adaptive interferometric imaging in clutter
and optimal illumination, Inverse Problems, 22 (2006), pp. 1405–1436.

L. Borcea, G. Papanicolaou and C.T., Coherent interferometric imaging in clutter,
Geophysics, 71 (2006), pp. SI165-SI175

L. Borcea, G. Papanicolaou and C.T., Optimal illumination and waveform design for
imaging in random media, J. Acoust. Soc. Am., 122 (2007), pp. 3507-3519.

L. Borcea, J. Garnier, G. Papanicolaou and C.T., Enhanced statistical stability in
coherent interferometric imaging, Inverse Problems, 27 (2011), p. 085003.
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Imaging in random media

Numerical setup for imaging in random media

r⃗1

r⃗N

xi G(r⃗j , z⃗i)

L

a
r⃗j

IW

xi′′ G(r⃗j , z⃗i′′ )

xi′ G(r⃗j , z⃗i′ )

z⃗i′′

z⃗i

z⃗i′

The IW is far from the array at distance L = 100ℓ.
Correlation length is ℓ = 100λ, strength of fluctuations is σ̃ = 0.4.
The size of the array is a = 24ℓ.
The decoherence parameters are selected to be optimal for CINT Xd = 4ℓ,
Ωd = B/2.
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Imaging in random media

Imaging results random medium

KM CINT

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80
c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.1

0.2

0.3

0.4

0.5

0.6

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80

c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80

c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80

c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C. Tsogka DL for imaging in complex media UC Merced 15 / 33



Imaging in random media

Imaging results random medium

KM CINT

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80
c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80

c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80

c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.05

0.1

0.15

0.2

0.25

0.3

-10 -5 0 5 10

range in 
0

-80

-60

-40

-20

0

20

40

60

80

c
ro

s
s
-r

a
n

g
e

 i
n

 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C. Tsogka DL for imaging in complex media UC Merced 15 / 33



Dictionary Learning for imaging in complex media

Table of contents

1 Inverse problems in wave propagation

2 Imaging in random media

3 Dictionary Learning for imaging in complex media

4 Super-resolution

5 Conclusions

C. Tsogka DL for imaging in complex media UC Merced 16 / 33



Dictionary Learning for imaging in complex media

Challenge

Our objective is to develop a statistically stable imaging method in random
media without loss in resolution.
We assume that we have access to multiple diverse measurements

ym = G xm, m = 1, 2, . . . ,M, M ⩾ CK lnK

Each xm is s-sparse and "random" in CN .
Given many ym can we reconstruct the columns of G ?
This is precisely the objective of Sparse Dictionary Learning.
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Dictionary Learning for imaging in complex media

1st ingredient : Sparse Dictionary Learning

Sparse Dictionary Learning aims at finding a set of basic elements, called a
dictionary, and a sparse representation of the input data in the form of a
linear combination of these basic elements.

Given many ym = Gxm we can reconstruct the columns of G and find the
coefficients xm.
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1

Maximum correlation between each estimated column and the true ones in
the sensing matrix. In red the columns of the matrix are more incoherent. In
blue the columns of the matrix are more coherent.
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Dictionary Learning for imaging in complex media

1st ingredient : Sparse Dictionary Learning

DL works well when the columns of G are incoherent.
Reconstructing the columns of G is not enough for imaging. The columns of
G are unordered.
We need to associate each column of G to its corresponding point in the
image window.
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Dictionary Learning for imaging in complex media

2nd ingredient : Multidimensional Scaling

Think of points in the IW as vertices z⃗i of a graph G.
If all the Euclidean distances D = (dij) between z⃗i and z⃗j are known, the
classical MDS algorithm (Torgerson, 1952) recovers the points (up to
rotation and translation).

−1

2
LDL = LZZTL ,Z = [z⃗1, z⃗2, . . . , z⃗K ]T

where L = IK − 1lK1lTK/K is a centering matrix, with IK the K ×K identity
matrix, and 1lK the column vector of all ones.
This means that the matrices ZZT and −D/2 are equal when the center of
mass of the configuration is moved to zero.
Z can be estimated from the SVD of − 1

2LDL

We don’t know D
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Dictionary Learning for imaging in complex media

2nd ingredient : Multidimensional Scaling

What if we use another distance ?
Take a graph G = (V,E), where edges connect the nearest vertices. Define
the geodesic graph distance between all vertices. That is, define a proxy
distance between vertices i and j, denoted d̂ij , to be equal to the number of
edges in the shortest path connecting i and j.

j

1

1

1

1
√
2

dij = 2
√
2 d̂ij = 4

i i

j

Apply the classical MDS to this proxy metric. Compute SVD of − 1
2LD̂L

This is MDS-MAP (Y. Shang et al, 2003).
How can we find the nearest vertices of each column of G ?
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Dictionary Learning for imaging in complex media

3rd ingredient : Cross-correlations

G∗g(z⃗i)
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Dictionary Learning for imaging in complex media

A three-step algorithm

Given many ym = Gxm, m = 1, 2, . . . ,M use Dictionary Learning to
reconstruct the unordered columns of G.
Construct a graph G = (V,E), where vertices are the unordered columns of
G, and they are connected by edges if cross-correlations are close to 1.
Compute the geodesic graph distance on the graph G = (V,E) and apply the
MDS algorithm to this proxy distance.
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0 50
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Dictionary Learning for imaging in complex media

Grid reconstruction
2nd step : MDS
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From left to right : Grid reconstruction using MDS with true Euclidean
distances ; Grid reconstruction using the MDS-MAP algorithm with geodesic
graph distances computed on the graph obtained from the true 4 nearest
neighbors ; 4 nearest neighbors from cross-correlations are used.
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Using 3 points as anchors we can estimate the scaling and the rotation
needed to recover the absolute grid positions
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Dictionary Learning for imaging in complex media

Imaging results

From left to right, image formed using the true random Green’s functions, the
homogeneous Green’s functions, and the recovered ones with the proposed
method. Top : σ̃ = 0.6. Bottom : σ̃ = 0.8
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Super-resolution

Time reversal and super-resolution in random media

Time reversal has many important applications in several areas such as
underwater sound, ultra-sound, imaging, and communications.
Important properties of time reversal in multiple scattering media :
super-resolution and statistical stability !
References (∞) : M. Fink et al., G. Papanicolaou et al.
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TR refocusing in homogeneous (left) and random (right) media.
We observe super-resolution in the cross-range direction.
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Super-resolution

Imaging results in strongly scattering media
Super-resolution allows us to image nearby targets

From left to right, image in a homogeneous medium, image formed using the true
random Green’s functions, image formed using the recovered Green’s functions with the
proposed method.
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Conclusions

Conclusions

We propose a method that achieves statistically stable imaging in random
media & benefits from multiple scattering allowing for super-resolution
The method is applicable if we have multiple diverse measurements.
The three key ingredients are

1 Given many ym = Gxm, m = 1, 2, . . . ,M use Dictionary Learning to
reconstruct the unordered columns of G.

2 Construct a graph G = (V,E), where vertices are the unordered columns of G,
and edges are found from cross-correlations.

3 Define the geodesic graph distance G = (V,E) and apply the MDS to this
proxy metric.

M. Moscoso, A. Novikov, G. Papanicolaou and C. T., Correlation-informed ordered
dictionary learning for imaging in complex media, PNAS 121 (11) e2314697121
(2024) https://doi.org/10.1073/pnas.2314697121
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Conclusions

Two delicate aspects
DL and coherence of the columns of G

Dictionary Learning needs the columns of G to be incoherent but if columns
are incoherent we cannot find neighbors and construct the graph needed for
MDS-MAP.

Subsampling and coherence : coherence increases when we decrease array size
(and bandwidth).
We can use sub-sets of the data in the second step to increase the coherence
and find neighbours
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Conclusions

Two delicate aspects
Dictionary Learning and its initialization

The DL problem is : find the dictionary G and the coeffs xm,

min
G,X

∥GX−Y∥2F , s.t.∥xm∥0 ⩽ s, m = 1, . . . ,M.

where X = [x1, . . . ,xM ] ∈ CK×M is the coeffs matrix and
Y = [y1, . . . ,yM ] ∈ CN×M the data matrix.

We solve this using alternating minimization

Step I min ∥X∥1 subject to GX = Y

Step II min
G

∥GX−Y∥2F .

Alternating minimization is non-convex. It converges if the initial guess G is
close to the true solution.
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Conclusions

A probabilistic method for initialization

Compute the (projections of) correlation-weighted covariance estimators

Σproj
j := Σj −

⟨Σj ,Σ⟩F
∥Σ∥2F

Σ,Σ =
1

M

M∑
m=1

ymy∗m,Σj :=
1

M

M∑
m=1

|⟨ym, yj⟩|2ymy∗m.

Theorem (A. Novikov, S.White 2023) Suppose a measurement yj comes from
sensing at most s points, s = o(N), and the columns of the sensing matrix G are
incoherent. The s-dimensional subspace spanned by the principal eigenvectors of
Σproj

j is close to the s-dimensional subspace spanned by the Green function vectors
of these points, as N ≫ 1 and M ≫ 1.
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Conclusions

JO des Poèts
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