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Après 60 ans, la susceptibilité augmente de 60% dans 3/4 des cas !
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The inverse problem

ω

Γ

B

The gravitational potential generated by a uniform mass distribution
in ω satisfies{

−∆uω = 1ω on R2,
uω = O(ln |x|) |x| → +∞.

Karim Ramdani Inverse gravimetric problem



10

Problem formulation
Reconstruction method

Numerical results

The inverse problem

ω

Γ

B

Obviously, this gravitational potential is given by

uω(x) =

∫
ω
G(x− y) dy = −(2π)−1

∫
ω
ln |x− y| dy

Inverse problem
Reconstruct ω given uω (or ∇uω) on Γ.
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Uniqueness

Theorem [Isakov, 1990]

Let ω1, ω2 be both

star-shaped with respect to their centers of gravity

or

convex in one direction

then ∇uω1 = ∇uω2 on Γ implies ω1 = ω2.

Figure – Star-shaped (left) and convex in one direction (right) domains.
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Stability

Given M,ρ−, ρ+, α > 0, let U be the set of star-shaped domains ω
described in polar coordinates by

ω =
{
x = (r, θ) ∈ R2 | r < ρ(θ), θ ∈ [0, 2π]

}
,

with

ρ− < ρ < ρ+, ∥ρ∥C2+α([0,2π]) ⩽ M .

Theorem, [Isakov, 1990]

There exists C > 0 such that for all ω1, ω2 ∈ U ,

∥∇uω1 −∇uω2∥L∞(Γ) < ε ⇒ ∥ρ1 − ρ2∥L∞([0,2π]) ⩽ C| ln ε|−
1
C .
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Idea of the method

Our goal is to construct a sequence of domains (ωN )N satsifying
the following (asymptotical) gravi-equivalence property :

∥∇uω −∇uωN ∥L∞(Γ) −→
N→+∞

0.

Karim Ramdani Inverse gravimetric problem
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Idea of the method

By Green’s formula, knowing uω and ∂nuω := ∇uω · n over Γ, we
can write for all function v :∫

Γ
(uω ∂nv − ∂nuω v) =

∫
Ω0

∆v uω −
∫
Ω0

∆uω v.

If we choose v harmonic, we can compute from the measurements∫
ω
v =

∫
Γ
uω ∂nv − ∂nuω v.

Using these harmonic moments as new measurements, we will construct
the domains ωN such that

∀0 ⩽ m ⩽ N,

∫
ω
zm =

∫
ωN

zm,

and these equalities will ensure the gravi-equivalence property.
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Related problems

Calderón’s inverse problem for highly conducting inclusions
−∆u = 0 in Ω0 \ ω,

u = f on Γ,
u = c on ∂ω,

where the constant c is such that :

∫
∂ω

∂u

∂n
= 0.

Recovering the shape of a highly conducting inclusion ω from the
knowledge of the DtN operator can also be formulated as a shape
from moments inverse problem. See for instance the contributions
of Ammari et al. on Generalized Polarisation Tensors and the
two papers by Munnier & R. (2017, 2018).
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Reconstruction method

Step 1 Given N ⩾ 1, find the (complex) weights c1, ..., cN and the
nodes z1, ..., zN such that :

∀0 ⩽ m ⩽ 2N − 1,

∫
ω
zm =

N∑
n=1

cnz
m
n .

Step 2 Knowing c1, ..., cN and z1, ..., zN , construct (if possible) ωN

such that

∀m ⩾ 0,

∫
ωN

zm =
N∑

n=1

cnz
m
n .

In particular, we will have

∀0 ⩽ m ⩽ 2N − 1,

∫
ω
zm =

∫
ωN

zm.
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Step 1 : Quadrature formula

Knowing

τm =

∫
ω
zm,

we want to solve the nonlinear system of 2N equations and 2N
unknowns (with pairwise distincts nodes)

∀0 ⩽ m ⩽ 2N − 1,

N∑
n=1

cnz
m
n = τm.

Such a system is known as a Prony’s system, and appears for ins-
tance in the study of Padé’s approximants, signal processing, error
correction codes (see [Batenkov and Yomdin, 2013]).

Karim Ramdani Inverse gravimetric problem
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Prony’s method

Set

H0 =


τ0 τ1 · · · τN−1

τ1 τ2 · · · τN
...

...
. . .

...
τN−1 τN · · · τ2N−2


and

P (z) =

∣∣∣∣∣∣∣∣∣∣∣

τN
τN+1

H0
...

τ2N−1

1 z · · · zN−1 zN

∣∣∣∣∣∣∣∣∣∣∣
.
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Theorem

The Prony’s system

∀0 ⩽ m ⩽ 2N − 1,

N∑
n=1

cnz
m
n = τm.

admits a solution if and only if the polynomial P admits N simple
roots. In this case, this solution is unique and the nodes z1, . . . , zN
are the roots of P .

Karim Ramdani Inverse gravimetric problem
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Prony’s method

Knowing (zn), we can compute (cn) by solving the Vandermonde
system

V(z)c = τ .

Following [Golub, Milanfar and Varah, 1999], (zn) are the
eigenvalues of the generalized eigenvalue problem

H1x = zH0x,

with

H0 =


τ0 τ1 · · · τN−1

τ1 τ2 · · · τN
...

...
. . .

...
τN−1 τN · · · τ2N−2

 H1 =


τ1 τ2 · · · τN
τ2 τ3 · · · τN+1
...

...
. . .

...
τN τN+1 · · · τ2N−1

 .
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Prony’s method

Remark

Solving Prony’s system involves 2 ill-conditioned problems : a gene-
ralized eigenvalue problem with Hankel matrices and a Vandermonde
linear system. To improve the conditioning, we solve a modified ge-
neralized eigenvalue problem

H1x = zH0x,

where
Hℓ = ΦHℓΦ

T, ℓ = 0, 1

and

Φ = Diag

[
1

ρ̂n

]N−1

n=0

, ρ̂ ∼ |τN |1/N .

Karim Ramdani Inverse gravimetric problem
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The unknown domain ω can be covered by plotting the disks cente-
red at the nodes zk with radii

√
|Re(ck)|/π.

Figure – Covering the unknown domain by balls : two examples.
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Step 2 : Quadrature domains

Given the weights c1, ..., cN and the nodes z1, ..., zN , construct ωN

such that

∀m ⩾ 0,

∫
ωN

zm =

N∑
n=1

cnz
m
n .

This leads to the notion of quadrature domains.
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Quadrature domains

Definition

Ω is a Harmonic Quadrature Domain (HQD) 1 if there exists
nodes (zn)1⩽n⩽N in Ω and (real) weights (cn)1⩽n⩽N such that for
all harmonic function v :∫

Ω
v =

N∑
n=1

cnv(zn).

1. “What is a quadrature domain ?”, B. Gustafsson and H. S. Shapiro, 2005.

The disk is the simplest HQD, since for every harmonic function v
in the disk B(a, r) (mean value property)∫

B(a,r)
v = πr2v(a).

Karim Ramdani Inverse gravimetric problem
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Quadrature domains

Disks : are the unique HQD with 1 point (N = 1).

Density : Smooth domains can be approximated by HQD.
Schwarz function : A bounded domain Ω is a HQD if and only
if there exists a meromorphic function S(z) in Ω, continuous
up to ∂Ω, so that S(z) = z on ∂Ω.
Every rational conformal mapping maps the unit disk on a
HQD.

Existence/Uniqueness of HQD? Existence is an open ques-
tion. Uniqueness does not hold (Ameur, Helmer and Tel-
lander, 2021).
Genreralization : The above definition of HQD can be exten-
ded to arbitrary measures (and not only atomic).
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Quadrature domains

Definition

Ω is a Sub-Harmonic Quadrature Domain (SHQD) if there exists
nodes (zn)1⩽n⩽N in Ω and (positive) weights (cn)1⩽n⩽N such that
for every subharmonic function v (i.e. −∆v ⩽ 0) :∫

Ω
v⩾

N∑
n=1

cnv(zn).

Ω is a SHQD =⇒ Ω is a HQD since

v harmonic =⇒ v,−v subharmonic =⇒
∫
Ω
v =

N∑
n=1

cnv(zn).

In the class of SHQD, existence and uniqueness are ensured
([Gustafsson, 1990]).
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Numerical construction of quadrature domains

The method proposed here is strongly related to partial balayage
of measures [Gustafsson, Sakai, 1994] and obstacle problem
[Gustafsson, Shahgholian, 1995].
We assume that the weights c1, . . . , cN are positive and that the
nodes z1, . . . , zN are contained in the unit disk B.
Let Ω be the SHQD associated to these weights and nodes and
assume that the Ω is compactly contained in B.

The (unknown) function

uΩ(x) = − 1

2π

∫
Ω
ln |x− y| dy,

gives access to the characteristic function of Ω, since :

1Ω = −∆uΩ.

Karim Ramdani Inverse gravimetric problem
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Step 1 : Constructing quadrature formula
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Numerical construction of quadrature domains

It can be proved that uΩ is the unique minimizer of the convex
functional

E(v) := 1

2

∫
B
|∇v|2 −

∫
B
v,

over the closed convex set

K := {v ∈ H1(B) | v ⩽ GN dans B; v = GN sur ∂B},

where GN (x) := − 1

2π

N∑
n=1

cn ln |x− zn|.
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where GN (x) := − 1

2π

N∑
n=1

cn ln |x− zn|.
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Numerical construction of quadrature domains

To obtain the SHQD Ω, it suffices to compute uΩ by solving the
above (standard) minimization problem ∗, and use the fact that

1Ω = −∆uΩ.

Remark

Since GN /∈ H1(B), we will use a slighlty modified (regularized)
version of this result, that shows that 1Ω = −∆ũΩ where ũΩ is the
unique minimizer of the convex functional E(v) over the closed
convex set

K̃ := {v ∈ H1(B) | v ⩽ G̃N dans B; v = G̃N sur ∂B},

with G̃N (x) := − 1

2π

N∑
n=1

∫
B(zn,rn)

ln |x− y| dy, rn :=
√
cn/π.

∗. Computations are made with FreeFem++ and we use P2 finite elements.
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Algorithm (for positive weights)

1 Choose N ⩾ 1.

2 For 0 ⩽ m ⩽ 2N − 1, compute

∫
ω
zm from the measurements.

3 Step 1 : Using Prony’s method, compute (zn) and (cn) s.t.
N∑

n=1

cnz
m
n =

∫
ω
zm, ∀0 ⩽ m ⩽ 2N − 1.

4 Step 2 : Determine the unique SHQD ωN associated to (zn)
and (cn).
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Convergence

Theorem

Assume that all the weights computed by the algorithm are positive.

1 If ω is a SHQD associated to a finite number of points, then
there exists N such that ωN = ω.

2 If there exists a compact set K ⊂ B and a constant C > 0
such that ωN ⊂ K for all N ⩾ 1 :, then

∥∇uωN −∇uω∥L∞(Γ) −→
N→∞

0.

If, in addition, ωN and ω are star-shaped with respect to their centers
of gravity and belong to U , then ωN converges to ω, in the sense
that

∥ρωN − ρω∥L∞(0,2π) −→ 0.

Karim Ramdani Inverse gravimetric problem
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Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Convergence

The equality determining the quadrature formula∫
ω
zm =

N∑
n=1

cnz
m
n , ∀0 ⩽ m ⩽ 2N − 1

can also be written∫
zm1ω =

∫
zmdµN , µN :=

N∑
n=1

cnδzn .

It is thus natural to expect the weights to be positive. In most of
our numerical examples, the weights were real and positive. When
negative weights appear, one needs tu use another algorithm to
construct HQD ; see [Ameur, Helmer and Tellander, 2021]
and [Gerber-Roth, Munnier, Ramdani, 2023].
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Outline

1 Problem formulation

2 Reconstruction method
Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

3 Numerical results
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1 0 1 1 0 1 1 0 1

Reconstructing a star-shaped domain without noise : N = 1, 5, 15.
Karim Ramdani Inverse gravimetric problem
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1 0 1 1 0 1 1 0 1

Reconstructing a star-shaped domain with noisy data (N = 15) :
1%, 3%, 5%.

Karim Ramdani Inverse gravimetric problem
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1 0 1 1 0 1 1 0 1 1 0 1

Reconstructing a domain convex in one direction with noisy data
(N = 12) : 0%, 1%, 2%, 3%.
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1 0 1 1 0 1 1 0 1 1.015 0.000 1.000

Reconstruction of disks with noisy data (N = 10) : 0%, 5%, 8%,
10%.

Karim Ramdani Inverse gravimetric problem
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Numerical results

N = 10 N = 15 N = 20 N = 25

0 % 1 0 1 1 0 1 1 0 1 1 0 1

1 % 1 0 1 1.072 0.000 1.000 1 0 1

3 % 1 0 1 1.001 0.000 1.000

5 % 1.037 0.000 1.000

Karim Ramdani Inverse gravimetric problem
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1 0 1 1 0 1

Instabilities may occur : false reconstruction with N = 31 (all the
weights are almost zero) and correct one for N = 32.

Karim Ramdani Inverse gravimetric problem
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Conclusion

We presented a reconstruction method based on an original
combination of Prony’s method and quadrature domains :
A reconstruction method for the inverse gravimetric problem
Anthony Gerber-Roth, Alexandre Munnier and Karim Ramdani
SMAI Journal of Computational Mathematics (2023)
https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/

What’s next ?

Surface uniform mass distribution.
Non uniform mass distribution.
3D
Stokes problem (Alexandre Munnier).

Karim Ramdani Inverse gravimetric problem

https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/
https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/
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Further comments
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Solving Prony’s system

P (Z) :=

N∏
n=1

(Z − zn) = ZN +

N−1∑
n=0

αnZ
n.



c1 + c2 + . . . + cN = τ0
c1z1 + c2z2 + . . . + cNzN = τ1
c1z

2
1 + c2z

2
2 + . . . + cNz2N = τ2

... =
...

c1z
N−1
1 + c2z

N−1
2 + . . . + cNzN−1

N = τN−1

c1z
N
1 + c2z

N
2 + . . . + cNzNN = τN

... =
...

c1z
2N−1
1 + c2z

2N−1
2 + . . . + cNz2N−1

N = τ2N−1

Karim Ramdani Inverse gravimetric problem
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Solving Prony’s system

P (Z) :=
N∏

n=1

(Z − zn) = ZN +

N−1∑
n=0

αnZ
n.



c1 + c2 + . . . + cN = τ0 ×α0

c1z1 + c2z2 + . . . + cNzN = τ1 ×α1

c1z
2
1 + c2z

2
2 + . . . + cNz2N = τ2 ×α2

... =
...

c1z
n−1
1 + c2z

n−1
2 + . . . + cNzN−1

N = τN−1 ×αN−1

c1z
n
1 + c2z

n
2 + . . . + cNzNN = τN ×1

... =
...

c1z
2N−1
1 + c2z

2N−1
2 + . . . + cNz2N−1

N = τ2N−1

c1P (z1) + c2P (z2) + · · ·+ cNP (zN ) =

α0τ0 + α1τ1 + · · ·+ · · ·+ αN−1τN−1 + τN

α0τ0 + α1τ1 + · · ·+ · · ·+ αn−1τn−1 = −τn.

Karim Ramdani Inverse gravimetric problem
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Solving Prony’s system

P (Z) :=

N∏
n=1

(Z − zn) = ZN +

N−1∑
n=0

αnZ
n.



c1 + c2 + . . . + cN = τ0
c1z1 + c2z2 + . . . + cNzN = τ1 ×α0

c1z
2
1 + c2z

2
2 + . . . + cNz2N = τ2 ×α1

... =
...

c1z
N−1
1 + c2z

N−1
2 + . . . + cNzN−1

N = τN−1 ×αN−2

c1z
N
1 + c2z

N
2 + . . . + cNzNN = τN ×αN−1

c1z
N+1
1 + c2z

N+1
2 + . . . + cNzN+1

N = τN+1 ×1
... =

...
c1z

2N−1
1 + c2z

2N−1
2 + . . . + cNz2N−1

N = τ2N−1

c1z1P (z1) + · · ·+ cnznP (zn) = α0τ1 + α1τ2 + · · ·+ · · ·+ αn−1τn + τn+1

α0τ1 + α1τ2 + · · ·+ · · ·+ αn−1τn = −τn+1.
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Solving Prony’s system


τ0 τ1 · · · τn−1

τ1 τ2 · · · τn
...

...
. . .

...
τn−1 τn · · · τ2n−2




α0

α1
...

αn−1

 = −


τn
τn+1
...

τ2n−1

 ⇐⇒ T0α = −τ ′.

Karim Ramdani Inverse gravimetric problem
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