UnE MÉTHODE DE RECONSTRUCTION POUR UN PROBLÈME INVERSE EN GRAVIMÉTRIE

Karim Ramdani

avec Anthony Gerber-Roth \& Alexandre Munnier

JO des POĖTES - RELAIS 4x60 17-19 avril 2024

DÉambulation Ondulatoire

Karim Ramdani

JO des POÈTES - RELAIS 4×60
17-19 avril 2024

Karim Ramdani

Asian Journal of Medicine and Health

18(9): 14-21, 2020; Article no.AJMAH. 60013
ISSN: 2456-8414

Susceptibility: could age be the explanatory variable?

Willard Oodendijk ${ }^{1 *}$, Michaël Rochoy ${ }^{2}$, Valentin Ruggeri ${ }^{3}$, Florian Cova ${ }^{4}$, Didier Lembrouille ${ }^{5}$, Sylvano Trottinetta ${ }^{6}$, Otter F. Hantome ${ }^{7}$, Nemo Macron ${ }^{8}$ and Manis Javanica ${ }^{9}$
${ }^{1}$ Belgian Institute of Technology and Education (BITE), Couillet, Belgium.
${ }^{2}$ General Practitioner and Independent Seeker of Science, Ankh, Morpork, France.
${ }^{3}$ Observatoire of Zététique, Grenoble, France.
${ }^{4}$ Institute for Quick and Dirty Science, Neuneuchâtel, Switzerland.
${ }^{5}$ Département de Médecine Nucléaire Compliante de la SFR, île de Guyane, France.
${ }^{6}$ Collectif Laissons les Vendeurs de Trottinette Prescrire, France.
${ }^{7}$ University of Melon, Melon, France.
${ }^{8}$ Palais de l'Élysée, Paris, France.
${ }^{9}$ Institute of Chiropteran Studies, East Timor.

Authors' contributions
This work was carried out in collaboration among all authors. Author WO launched idea on Twitter, added some sentences, submitted the paper, corresponded with the kind publisher. Author MR

Après 60 ans, la susceptibilité augmente de 60% dans $3 / 4$ des cas!

Une méthode de reconstruction pour UN PROBLÈME INVERSE EN GRAVIMÉTRIE

Karim Ramdani
avec Anthony Gerber-Roth \& Alexandre Munnier

(1)
UNIVERSITÉ
DE LORRAINE

JO des POÈTES - RELAIS 4×60 17-19 avril 2024

Outline

(1) Problem formulation
(2) Reconstruction method

- Step 1 : Constructing quadrature formula
- Step 2 : Constructing quadrature domains
(3) Numerical results

Outline

(1) Problem formulation

(2) Reconstruction method

- Step 1 : Constructing quadrature formula
- Step 2 : Constructing quadrature domains
(3) Numerical results

The inverse problem

The gravitational potential generated by a uniform mass distribution in ω satisfies

$$
\left\{\begin{aligned}
-\Delta u_{\omega} & =\mathbb{1}_{\omega} & & \text { on } \mathbb{R}^{2} \\
u_{\omega} & =\mathcal{O}(\ln |x|) & & |x| \rightarrow+\infty
\end{aligned}\right.
$$

The inverse problem

Obviously, this gravitational potential is given by

$$
u_{\omega}(x)=\int_{\omega} G(x-y) \mathrm{d} y=-(2 \pi)^{-1} \int_{\omega} \ln |x-y| \mathrm{d} y
$$

The inverse problem

Obviously, this gravitational potential is given by

$$
u_{\omega}(x)=\int_{\omega} G(x-y) \mathrm{d} y=-(2 \pi)^{-1} \int_{\omega} \ln |x-y| \mathrm{d} y
$$

Inverse problem
Reconstruct ω given u_{ω} (or ∇u_{ω}) on Γ.

Uniqueness

Theorem [Isakov, 1990]
Let ω_{1}, ω_{2} be both

- star-shaped with respect to their centers of gravity
or
- convex in one direction then $\nabla u_{\omega_{1}}=\nabla u_{\omega_{2}}$ on Γ implies $\omega_{1}=\omega_{2}$.

Figure - Star-shaped (left) and convex in one direction (right) domains.

Stability

Given $M, \rho_{-}, \rho_{+}, \alpha>0$, let \mathcal{U} be the set of star-shaped domains ω described in polar coordinates by

$$
\omega=\left\{x=(r, \theta) \in \mathbb{R}^{2} \mid r<\rho(\theta), \quad \theta \in[0,2 \pi]\right\}
$$

Stability

Given $M, \rho_{-}, \rho_{+}, \alpha>0$, let \mathcal{U} be the set of star-shaped domains ω described in polar coordinates by

$$
\omega=\left\{x=(r, \theta) \in \mathbb{R}^{2} \mid r<\rho(\theta), \quad \theta \in[0,2 \pi]\right\}
$$

with

$$
\rho_{-}<\rho<\rho_{+}, \quad\|\rho\|_{C^{2+\alpha}([0,2 \pi])} \leqslant M
$$

Stability

Given $M, \rho_{-}, \rho_{+}, \alpha>0$, let \mathcal{U} be the set of star-shaped domains ω described in polar coordinates by

$$
\omega=\left\{x=(r, \theta) \in \mathbb{R}^{2} \mid r<\rho(\theta), \quad \theta \in[0,2 \pi]\right\}
$$

with

$$
\rho_{-}<\rho<\rho_{+}, \quad\|\rho\|_{C^{2+\alpha}([0,2 \pi])} \leqslant M
$$

Theorem, [Isakov, 1990]

There exists $C>0$ such that for all $\omega_{1}, \omega_{2} \in \mathcal{U}$,

$$
\left\|\nabla u_{\omega_{1}}-\nabla u_{\omega_{2}}\right\|_{L^{\infty}(\Gamma)}<\varepsilon \Rightarrow\left\|\rho_{1}-\rho_{2}\right\|_{L^{\infty}([0,2 \pi])} \leqslant C|\ln \varepsilon|^{-\frac{1}{C}} .
$$

Idea of the method

Our goal is to construct a sequence of domains $\left(\omega_{N}\right)_{N}$ satsifying the following (asymptotical) gravi-equivalence property:

$$
\left\|\nabla u_{\omega}-\nabla u_{\omega_{N}}\right\|_{L^{\infty}(\Gamma)}^{N \rightarrow+\infty} \underset{ }{\longrightarrow}
$$

Idea of the method

By Green's formula, knowing u_{ω} and $\partial_{n} u_{\omega}:=\nabla u_{\omega} \cdot n$ over Γ, we can write for all function v :

$$
\int_{\Gamma}\left(u_{\omega} \partial_{n} v-\partial_{n} u_{\omega} v\right)=\int_{\Omega_{0}} \Delta v u_{\omega}-\int_{\Omega_{0}} \Delta u_{\omega} v .
$$

Idea of the method

By Green's formula, knowing u_{ω} and $\partial_{n} u_{\omega}:=\nabla u_{\omega} \cdot n$ over Γ, we can write for all function v :

$$
\int_{\Gamma}\left(u_{\omega} \partial_{n} v-\partial_{n} u_{\omega} v\right)=\int_{\Omega_{0}} \Delta v u_{\omega}-\int_{\Omega_{0}} \Delta u_{\omega} v
$$

If we choose v harmonic, we can compute from the measurements

$$
\int_{\omega} v=\int_{\Gamma} u_{\omega} \partial_{n} v-\partial_{n} u_{\omega} v .
$$

Idea of the method

By Green's formula, knowing u_{ω} and $\partial_{n} u_{\omega}:=\nabla u_{\omega} \cdot n$ over Γ, we can write for all function v :

$$
\int_{\Gamma}\left(u_{\omega} \partial_{n} v-\partial_{n} u_{\omega} v\right)=\int_{\Omega_{0}} \Delta v u_{\omega}-\int_{\Omega_{0}} \Delta u_{\omega} v
$$

If we choose v harmonic, we can compute from the measurements

$$
\int_{\omega} v=\int_{\Gamma} u_{\omega} \partial_{n} v-\partial_{n} u_{\omega} v
$$

Using these harmonic moments as new measurements, we will construct the domains ω_{N} such that

$$
\forall 0 \leqslant m \leqslant N, \quad \int_{\omega} z^{m}=\int_{\omega_{N}} z^{m}
$$

and these equalities will ensure the gravi-equivalence property.

Related problems

Calderón's inverse problem for highly conducting inclusions

$$
\left\{\begin{aligned}
-\Delta u & =0 & & \text { in } \Omega_{0} \backslash \bar{\omega}, \\
u & =f & & \text { on } \Gamma, \\
u & =c & & \text { on } \partial \omega,
\end{aligned}\right.
$$

where the constant c is such that: $\int_{\partial \omega} \frac{\partial u}{\partial n}=0$.
Recovering the shape of a highly conducting inclusion ω from the knowledge of the DtN operator can also be formulated as a shape from moments inverse problem. See for instance the contributions of Ammari et al. on Generalized Polarisation Tensors and the two papers by Munnier \& R. $(2017,2018)$.

Related problems

Métrologie

Multiples	Symboles	Rapport à l'unité de mesure	Sous- multiples	Symboles	Rapport à l'unité de mesure
quetta-	Q	10^{30}	déci-	d	10^{-1}
ronna-	R	10^{27}	centi-	c	10^{-2}
yotta-	Y	10^{24}	milli-	m	10^{-3}
zetta-	Z	10^{21}	micro-	μ	10^{-6}
exa-	E	10^{18}	nano-	n	10^{-9}
péta-	P	10^{15}	pico-	p	10^{-12}
téra-	T	10^{12}	femto-	f	10^{-15}
giga-	G	10^{9}	atto-	a	10^{-18}
méga-	M	10^{6}	zepto-	z	10^{-21}
kilo-	k	10^{3}	yocto-	y	10^{-24}
hecto-	h	10^{2}	ronto-	r	10^{-27}
déca-	da	10^{1}	quecto-	q	10^{-30}

Outline

(1) Problem formulation
(2) Reconstruction method

- Step 1 : Constructing quadrature formula
- Step 2 : Constructing quadrature domains
(3) Numerical results

Reconstruction method

Step 1 Given $N \geqslant 1$, find the (complex) weights c_{1}, \ldots, c_{N} and the nodes z_{1}, \ldots, z_{N} such that:

$$
\forall 0 \leqslant m \leqslant 2 N-1, \quad \int_{\omega} z^{m}=\sum_{n=1}^{N} c_{n} z_{n}^{m}
$$

Reconstruction method

Step 1 Given $N \geqslant 1$, find the (complex) weights c_{1}, \ldots, c_{N} and the nodes z_{1}, \ldots, z_{N} such that:

$$
\forall 0 \leqslant m \leqslant 2 N-1, \quad \int_{\omega} z^{m}=\sum_{n=1}^{N} c_{n} z_{n}^{m}
$$

Step 2 Knowing c_{1}, \ldots, c_{N} and z_{1}, \ldots, z_{N}, construct (if possible) ω_{N} such that

$$
\forall m \geqslant 0, \quad \int_{\omega_{N}} z^{m}=\sum_{n=1}^{N} c_{n} z_{n}^{m}
$$

Reconstruction method

Step 1 Given $N \geqslant 1$, find the (complex) weights c_{1}, \ldots, c_{N} and the nodes z_{1}, \ldots, z_{N} such that:

$$
\forall 0 \leqslant m \leqslant 2 N-1, \quad \int_{\omega} z^{m}=\sum_{n=1}^{N} c_{n} z_{n}^{m}
$$

Step 2 Knowing c_{1}, \ldots, c_{N} and z_{1}, \ldots, z_{N}, construct (if possible) ω_{N} such that

$$
\forall m \geqslant 0, \quad \int_{\omega_{N}} z^{m}=\sum_{n=1}^{N} c_{n} z_{n}^{m}
$$

In particular, we will have

$$
\forall 0 \leqslant m \leqslant 2 N-1, \quad \int_{\omega} z^{m}=\int_{\omega_{N}} z^{m}
$$

Step 1 : Quadrature formula

Knowing

$$
\tau_{m}=\int_{\omega} z^{m}
$$

we want to solve the nonlinear system of $2 N$ equations and $2 N$ unknowns (with pairwise distincts nodes)

$$
\forall 0 \leqslant m \leqslant 2 N-1, \quad \sum_{n=1}^{N} c_{n} z_{n}^{m}=\tau_{m}
$$

Such a system is known as a Prony's system, and appears for instance in the study of Pade's approximants, signal processing, error correction codes (see [Batenkov and Yomdin, 2013]).

Step 1 : Constructing quadrature formula
Step 2 : Constructing quadrature domains

Prony's method

Set

$$
\mathbb{H}_{0}=\left(\begin{array}{cccc}
\tau_{0} & \tau_{1} & \cdots & \tau_{N-1} \\
\tau_{1} & \tau_{2} & \cdots & \tau_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{N-1} & \tau_{N} & \cdots & \tau_{2 N-2}
\end{array}\right)
$$

and

$$
P(z)=\left|\begin{array}{cccc|c}
& & & & \tau_{N} \\
& & & & \tau_{N+1} \\
& & \mathbb{H}_{0} & & \vdots \\
& & & & \tau_{2 N-1} \\
\hline 1 & z & \cdots & z^{N-1} & z^{N}
\end{array}\right| .
$$

Prony's method

Theorem

The Prony's system

$$
\forall 0 \leqslant m \leqslant 2 N-1, \quad \sum_{n=1}^{N} c_{n} z_{n}^{m}=\tau_{m}
$$

admits a solution if and only if the polynomial P admits N simple roots. In this case, this solution is unique and the nodes z_{1}, \ldots, z_{N} are the roots of P.

Prony's method

Knowing $\left(z_{n}\right)$, we can compute $\left(c_{n}\right)$ by solving the Vandermonde system

$$
\mathbb{V}(z) \mathbf{c}=\boldsymbol{\tau}
$$

Prony's method

Knowing $\left(z_{n}\right)$, we can compute $\left(c_{n}\right)$ by solving the Vandermonde system

$$
\mathbb{V}(z) \mathbf{c}=\boldsymbol{\tau}
$$

Following [Golub, Milanfar and Varah, 1999], $\left(z_{n}\right)$ are the eigenvalues of the generalized eigenvalue problem

$$
\mathbb{H}_{1} \mathbf{x}=z \mathbb{H}_{0} \mathbf{x}
$$

with

$$
\mathbb{H}_{0}=\left(\begin{array}{cccc}
\tau_{0} & \tau_{1} & \cdots & \tau_{N-1} \\
\tau_{1} & \tau_{2} & \cdots & \tau_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{N-1} & \tau_{N} & \cdots & \tau_{2 N-2}
\end{array}\right) \mathbb{H}_{1}=\left(\begin{array}{cccc}
\tau_{1} & \tau_{2} & \cdots & \tau_{N} \\
\tau_{2} & \tau_{3} & \cdots & \tau_{N+1} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{N} & \tau_{N+1} & \cdots & \tau_{2 N-1}
\end{array}\right)
$$

Prony's method

Remark

Solving Prony's system involves 2 ill-conditioned problems : a generalized eigenvalue problem with Hankel matrices and a Vandermonde linear system. To improve the conditioning, we solve a modified generalized eigenvalue problem

$$
\boldsymbol{H}_{1} \mathbf{x}=z \boldsymbol{H}_{0} \mathbf{x}
$$

where

$$
\boldsymbol{H}_{\ell}=\Phi \mathbb{H}_{\ell} \Phi^{T}, \quad \ell=0,1
$$

and

$$
\Phi=\operatorname{Diag}\left[\frac{1}{\hat{\rho}^{n}}\right]_{n=0}^{N-1}, \quad \widehat{\rho} \sim\left|\tau_{N}\right|^{1 / N}
$$

The unknown domain ω can be covered by plotting the disks centered at the nodes z_{k} with radii $\sqrt{\left|\operatorname{Re}\left(c_{k}\right)\right| / \pi}$.

Figure - Covering the unknown domain by balls : two examples.

Step 2 : Quadrature domains

Given the weights c_{1}, \ldots, c_{N} and the nodes z_{1}, \ldots, z_{N}, construct ω_{N} such that

$$
\forall m \geqslant 0, \quad \int_{\omega_{N}} z^{m}=\sum_{n=1}^{N} c_{n} z_{n}^{m}
$$

This leads to the notion of quadrature domains.

Quadrature domains

Definition

Ω is a Harmonic Quadrature Domain (HQD) ${ }^{1}$ if there exists nodes $\left(z_{n}\right)_{1 \leqslant n \leqslant N}$ in Ω and (real) weights $\left(c_{n}\right)_{1 \leqslant n \leqslant N}$ such that for all harmonic function v :

$$
\int_{\Omega} v=\sum_{n=1}^{N} c_{n} v\left(z_{n}\right)
$$

1. "What is a quadrature domain ?", B. Gustafsson and H. S. Shapiro, 2005.

The disk is the simplest HQD, since for every harmonic function v in the disk $B(a, r)$ (mean value property)

$$
\int_{B(a, r)} v=\pi r^{2} v(a)
$$

Quadrature domains

- Disks : are the unique HQD with 1 point $(N=1)$.

Quadrature domains

- Disks : are the unique HQD with 1 point $(N=1)$.
- Density : Smooth domains can be approximated by HQD.

Quadrature domains

- Disks : are the unique HQD with 1 point $(N=1)$.
- Density : Smooth domains can be approximated by HQD.
- Schwarz function : A bounded domain Ω is a HQD if and only if there exists a meromorphic function $S(z)$ in Ω, continuous up to $\partial \Omega$, so that $S(z)=\bar{z}$ on $\partial \Omega$.

Quadrature domains

- Disks : are the unique HQD with 1 point $(N=1)$.
- Density : Smooth domains can be approximated by HQD.
- Schwarz function : A bounded domain Ω is a HQD if and only if there exists a meromorphic function $S(z)$ in Ω, continuous up to $\partial \Omega$, so that $S(z)=\bar{z}$ on $\partial \Omega$.
- Every rational conformal mapping maps the unit disk on a HQD.

Quadrature domains

- Disks : are the unique HQD with 1 point $(N=1)$.
- Density : Smooth domains can be approximated by HQD.
- Schwarz function : A bounded domain Ω is a HQD if and only if there exists a meromorphic function $S(z)$ in Ω, continuous up to $\partial \Omega$, so that $S(z)=\bar{z}$ on $\partial \Omega$.
- Every rational conformal mapping maps the unit disk on a HQD.
- Existence/Uniqueness of HQD ? Existence is an open question. Uniqueness does not hold (Ameur, Helmer and TelLANDER, 2021).

Quadrature domains

- Disks : are the unique HQD with 1 point $(N=1)$.
- Density : Smooth domains can be approximated by HQD.
- Schwarz function : A bounded domain Ω is a HQD if and only if there exists a meromorphic function $S(z)$ in Ω, continuous up to $\partial \Omega$, so that $S(z)=\bar{z}$ on $\partial \Omega$.
- Every rational conformal mapping maps the unit disk on a HQD.
- Existence/Uniqueness of HQD ? Existence is an open question. Uniqueness does not hold (Ameur, Helmer and TelLANDER, 2021).
- Genreralization : The above definition of HQD can be extended to arbitrary measures (and not only atomic).

Quadrature domains

Definition

Ω is a Sub-Harmonic Quadrature Domain (SHQD) if there exists nodes $\left(z_{n}\right)_{1 \leqslant n \leqslant N}$ in Ω and (positive) weights $\left(c_{n}\right)_{1 \leqslant n \leqslant N}$ such that for every subharmonic function v (i.e. $-\Delta v \leqslant 0$) :

$$
\int_{\Omega} v \geqslant \sum_{n=1}^{N} c_{n} v\left(z_{n}\right)
$$

Quadrature domains

Definition

Ω is a Sub-Harmonic Quadrature Domain (SHQD) if there exists nodes $\left(z_{n}\right)_{1 \leqslant n \leqslant N}$ in Ω and (positive) weights $\left(c_{n}\right)_{1 \leqslant n \leqslant N}$ such that for every subharmonic function v (i.e. $-\Delta v \leqslant 0$) :

$$
\int_{\Omega} v \geqslant \sum_{n=1}^{N} c_{n} v\left(z_{n}\right)
$$

Ω is a SHQD $\Longrightarrow \Omega$ is a HQD since
v harmonic $\Longrightarrow v,-v$ subharmonic $\Longrightarrow \int_{\Omega} v=\sum_{n=1}^{N} c_{n} v\left(z_{n}\right)$.

Quadrature domains

Definition

Ω is a Sub-Harmonic Quadrature Domain (SHQD) if there exists nodes $\left(z_{n}\right)_{1 \leqslant n \leqslant N}$ in Ω and (positive) weights $\left(c_{n}\right)_{1 \leqslant n \leqslant N}$ such that for every subharmonic function v (i.e. $-\Delta v \leqslant 0$) :

$$
\int_{\Omega} v \geqslant \sum_{n=1}^{N} c_{n} v\left(z_{n}\right)
$$

Ω is a SHQD $\Longrightarrow \Omega$ is a HQD since
v harmonic $\Longrightarrow v,-v$ subharmonic $\Longrightarrow \int_{\Omega} v=\sum_{n=1}^{N} c_{n} v\left(z_{n}\right)$.
In the class of SHQD, existence and uniqueness are ensured ([Gustafsson, 1990]).

Numerical construction of quadrature domains

The method proposed here is strongly related to partial balayage of measures [Gustafsson, Sakai, 1994] and obstacle problem [Gustafsson, Shahgholian, 1995].
We assume that the weights c_{1}, \ldots, c_{N} are positive and that the nodes z_{1}, \ldots, z_{N} are contained in the unit disk B. Let Ω be the SHQD associated to these weights and nodes and assume that the Ω is compactly contained in B.

Numerical construction of quadrature domains

The method proposed here is strongly related to partial balayage of measures [Gustafsson, Sakai, 1994] and obstacle problem [Gustafsson, Shahgholian, 1995].
We assume that the weights c_{1}, \ldots, c_{N} are positive and that the nodes z_{1}, \ldots, z_{N} are contained in the unit disk B.
Let Ω be the SHQD associated to these weights and nodes and assume that the Ω is compactly contained in B.

The (unknown) function

$$
u_{\Omega}(x)=-\frac{1}{2 \pi} \int_{\Omega} \ln |x-y| \mathrm{d} y
$$

gives access to the characteristic function of Ω, since :

$$
\mathbb{1}_{\Omega}=-\Delta u_{\Omega} .
$$

Numerical construction of quadrature domains

It can be proved that u_{Ω} is the unique minimizer of the convex functional

$$
\mathcal{E}(v):=\frac{1}{2} \int_{B}|\nabla v|^{2}-\int_{B} v,
$$

Numerical construction of quadrature domains

It can be proved that u_{Ω} is the unique minimizer of the convex functional

$$
\mathcal{E}(v):=\frac{1}{2} \int_{B}|\nabla v|^{2}-\int_{B} v,
$$

over the closed convex set

$$
K:=\left\{v \in H^{1}(B) \mid v \leqslant G_{N} \text { dans } B ; v=G_{N} \text { sur } \partial B\right\}
$$

Numerical construction of quadrature domains

It can be proved that u_{Ω} is the unique minimizer of the convex functional

$$
\mathcal{E}(v):=\frac{1}{2} \int_{B}|\nabla v|^{2}-\int_{B} v,
$$

over the closed convex set

$$
K:=\left\{v \in H^{1}(B) \mid v \leqslant G_{N} \text { dans } B ; v=G_{N} \text { sur } \partial B\right\}
$$

where $G_{N}(x):=-\frac{1}{2 \pi} \sum_{n=1}^{N} c_{n} \ln \left|x-z_{n}\right|$.

Numerical construction of quadrature domains

To obtain the SHQD Ω, it suffices to compute u_{Ω} by solving the above (standard) minimization problem *, and use the fact that

$$
\mathbb{1}_{\Omega}=-\Delta u_{\Omega} .
$$

*. Computations are made with FreeFem ++ and we use \mathbb{P}_{2} finite elements.

Numerical construction of quadrature domains

To obtain the SHQD Ω, it suffices to compute u_{Ω} by solving the above (standard) minimization problem *, and use the fact that

$$
\mathbb{1}_{\Omega}=-\Delta u_{\Omega} .
$$

Remark

Since $G_{N} \notin H^{1}(B)$, we will use a slighlty modified (regularized) version of this result, that shows that $\mathbb{1}_{\Omega}=-\Delta \widetilde{u}_{\Omega}$ where \widetilde{u}_{Ω} is the unique minimizer of the convex functional $\mathcal{E}(v)$ over the closed convex set

$$
\begin{gathered}
\widetilde{K}:=\left\{v \in H^{1}(B) \mid v \leqslant \widetilde{G}_{N} \text { dans } B ; v=\widetilde{G}_{N} \text { sur } \partial B\right\}, \\
\text { with } \widetilde{G}_{N}(x):=-\frac{1}{2 \pi} \sum_{n=1}^{N} \int_{B\left(z_{n}, r_{n}\right)} \ln |x-y| \mathrm{d} y, r_{n}:=\sqrt{c_{n} / \pi} .
\end{gathered}
$$

*. Computations are made with FreeFem ++ and we use \mathbb{P}_{2} finite elements.

Step 1 : Constructing quadrature formula Step 2 : Constructing quadrature domains

Algorithm (for positive weights)

(1) Choose $N \geqslant 1$.
(2) For $0 \leqslant m \leqslant 2 N-1$, compute $\int_{\omega} z^{m}$ from the measurements.

Algorithm (for positive weights)

(1) Choose $N \geqslant 1$.
(2) For $0 \leqslant m \leqslant 2 N-1$, compute $\int_{\omega} z^{m}$ from the measurements.
(3) Step 1 : Using Prony's method, compute $\left(z_{n}\right)$ and $\left(c_{n}\right)$ s.t.

$$
\sum_{n=1}^{N} c_{n} z_{n}^{m}=\int_{\omega} z^{m}, \quad \forall 0 \leqslant m \leqslant 2 N-1
$$

Algorithm (for positive weights)

(1) Choose $N \geqslant 1$.
(2) For $0 \leqslant m \leqslant 2 N-1$, compute $\int_{\omega} z^{m}$ from the measurements.
(3) Step 1 : Using Prony's method, compute $\left(z_{n}\right)$ and $\left(c_{n}\right)$ s.t.

$$
\sum_{n=1}^{N} c_{n} z_{n}^{m}=\int_{\omega} z^{m}, \quad \forall 0 \leqslant m \leqslant 2 N-1
$$

(9) Step 2 : Determine the unique SHQD ω_{N} associated to $\left(z_{n}\right)$ and $\left(c_{n}\right)$.

Convergence

Theorem

Assume that all the weights computed by the algorithm are positive.
(1) If ω is a SHQD associated to a finite number of points, then there exists N such that $\omega_{N}=\omega$.
(2) If there exists a compact set $K \subset B$ and a constant $C>0$ such that $\omega_{N} \subset K$ for all $N \geqslant 1$:, then

$$
\left\|\nabla u_{\omega_{N}}-\nabla u_{\omega}\right\|_{L^{\infty}(\Gamma)} \underset{N \rightarrow \infty}{\longrightarrow} 0 .
$$

If, in addition, ω_{N} and ω are star-shaped with respect to their centers of gravity and belong to \mathcal{U}, then ω_{N} converges to ω, in the sense that

$$
\left\|\rho_{\omega_{N}}-\rho_{\omega}\right\|_{L^{\infty}(0,2 \pi)} \longrightarrow 0
$$

Convergence

The equality determining the quadrature formula

$$
\int_{\omega} z^{m}=\sum_{n=1}^{N} c_{n} z_{n}^{m}, \quad \forall 0 \leqslant m \leqslant 2 N-1
$$

can also be written

$$
\int z^{m} \mathbb{1}_{\omega}=\int z^{m} \mathrm{~d} \mu_{N}, \quad \mu_{N}:=\sum_{n=1}^{N} c_{n} \delta_{z_{n}}
$$

It is thus natural to expect the weights to be positive. In most of our numerical examples, the weights were real and positive. When negative weights appear, one needs tu use another algorithm to construct HQD ; see [Ameur, Helmer and Tellander, 2021] and [Gerber-Roth, Munnier, Ramdani, 2023].

Outline

(1) Problem formulation
2) Reconstruction method

- Step 1 : Constructing quadrature formula
- Step 2 : Constructing quadrature domains
(3) Numerical results

Reconstructing a star-shaped domain without noise : $N=1,5,15$.

Reconstructing a star-shaped domain with noisy data $(N=15)$: $1 \%, 3 \%, 5 \%$.

Reconstructing a domain convex in one direction with noisy data $(N=12): 0 \%, 1 \%, 2 \%, 3 \%$.

Reconstruction of disks with noisy data $(N=10): 0 \%, 5 \%, 8 \%$, 10%.

0

Instabilities may occur : false reconstruction with $N=31$ (all the weights are almost zero) and correct one for $N=32$.

Conclusion

- We presented a reconstruction method based on an original combination of Prony's method and quadrature domains :
A reconstruction method for the inverse gravimetric problem
Anthony Gerber-Roth, Alexandre Munnier and Karim Ramdani
SMAI Journal of Computational Mathematics (2023)
https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.99/
- What's next?
- Surface uniform mass distribution.
- Non uniform mass distribution.
- 3D
- Stokes problem (Alexandre Munnier).

Selected bibliography

- "Quadrature domains" Makoto Sakai (1982)
- "Inverse source problems" Victor Isakov (1990)
- "Properties of some balayage operators, with applications to quadrature domains and moving boundary problems" Björn Gustafsson and Makoto Sakai (1994)
- "A stable numerical method for inverting shape from moments" Gene H. Golub,Peyman Milanfar and James Varah (1999)
- "Lectures on balayage" Björn Gustafsson (2004)
- "What is a quadrature domain ?" Björn Gustafsson and Harold S. Shapiro (2005)
- "On the accuracy of solving confluent Prony systems" Dmitry Batenkov and Yosef Yomdin (2013)

Ixterpretation geirmetrique et lia ave C came tunyent

$$
\text { ar } 6 \frac{\text { Toujours }}{T_{x} K \subset K e r\left(Y^{\prime}(x)\right)}
$$

$$
\text { En fffer, } d \in T_{\bar{x}} K \Rightarrow \quad \exists x_{k} \in K, h_{k} \in R_{+}^{*}, \frac{x_{k}-\bar{x}}{t_{k}} \rightarrow d \text {. }
$$

$$
\begin{aligned}
& 0=f\left(x_{k}\right)=f^{\prime}(\bar{x})\left(x_{k}-\bar{x}\right) \cdot 0\left(\| x_{k}-\bar{x}\right) \| \\
& 0=f^{\prime}(\bar{x})\left(\underline{x_{k}-\bar{x}}\right)+1 / k_{L} \cdot\left\|x_{k} \cdot \bar{x}\right\| \quad \xrightarrow[k \rightarrow 1]{ } \quad \longrightarrow \quad f^{\prime}(x) d
\end{aligned}
$$

4.1. Approche naive: les idées, sans trop de technique...

Figare 4.2: Opérateurs d'ondes et opérateurn de diffuxion
(oú la seconde Égallté découle du caractere unitaire ${ }^{5}$ de $\exp \left(-1 \mathbb{A}^{1 / 2}\right)$. Aisur hateanamata $u(t)$ et $G(t)$ correnpondent ì une mime onde incidente (ou entrunte) ai cette quastik tead

$$
\begin{aligned}
& \text { Sort } v \in D\left(A^{*}\right) \quad \text { Alors il existe } w \in L \\
& \forall u \in D(A) \quad \int_{\mathbb{R}^{2}} d w(\varepsilon \nabla u) v=\int_{\mathbb{R}^{2}} u w
\end{aligned}
$$

Soit x une fonchon de troneature de lo fen

$$
x(x)=\theta\left(\left|x-x_{0}\right|\right)
$$

où B est une fonchen de loncolue et x_{0} un p $O m$ a $\forall u \in D(A)$ xu $\forall D(f)$ den C

$$
\int_{\mathbb{R}^{2}} d \omega(\varepsilon \nabla(x u)) v=\int_{\mathbb{R}^{2}} x u w
$$

d'er

$$
\int_{\mathbb{R}^{2}} d \omega^{2}(e \nabla u)(x v)=\int_{\mathbb{R}^{2}} u\left(x \omega^{-}-\sqrt[\omega]{ } \omega(e \nabla x)\right)
$$

...MERCI....

Further comments

Solving Prony's system

$$
P(Z):=\prod_{n=1}^{N}\left(Z-z_{n}\right)=Z^{N}+\sum_{n=0}^{N-1} \alpha_{n} Z^{n} .
$$

$$
\left\{\begin{array}{ccccccccc}
c_{1} & + & c_{2} & + & \ldots & + & c_{N} & = & \tau_{0} \\
c_{1} z_{1} & + & c_{2} z_{2} & + & \ldots & + & c_{N} z_{N} & = & \tau_{1} \\
c_{1} z_{1}^{2} & + & c_{2} z_{2}^{2} & + & \ldots & + & c_{N} z_{N}^{2} & = & \tau_{2} \\
& & & & \vdots & & & & \\
c_{1} z_{1}^{N-1} & + & c_{2} z_{2}^{N-1} & + & \ldots & + & c_{N} z_{N}^{N-1} & & = \\
c_{1} z_{1}^{N} & + & c_{2} z_{2}^{N} & + & \ldots & + & c_{N} z_{N}^{N} & = & \tau_{N-1} \\
& & & & \vdots & & & \tau_{N} \\
c_{1} z_{1}^{2 N-1} & + & c_{2} z_{2}^{2 N-1} & + & \ldots & + & c_{N} z_{N}^{2 N-1} & & = \\
c_{2 N-1}
\end{array}\right.
$$

Solving Prony's system

$$
\begin{aligned}
& P(Z):=\prod_{n=1}^{N}\left(Z-z_{n}\right)=Z^{N}+\sum_{n=0}^{N-1} \alpha_{n} Z^{n} . \\
& \left(\begin{array}{cccccccccc}
c_{1} & + & c_{2} & + & \ldots & + & c_{N} & = & \tau_{0} & \times \alpha_{0} \\
c_{1} z_{1} & + & c_{2} z_{2} & + & \ldots & + & c_{N} z_{N} & = & \tau_{1} & \times \alpha_{1} \\
c_{1} z_{1}^{2} & + & c_{2} z_{2}^{2} & + & \ldots & + & c_{N} z_{N}^{2} & = & \tau_{2} & \times \alpha_{2}
\end{array}\right. \\
& \begin{array}{cccccccl}
c_{1} z_{1}^{n-1} & +c_{2} z_{2}^{n-1} & + & \ldots & + & c_{N} z_{N}^{N-1} & = & \tau_{N-1} \\
c_{1} z_{1}^{n} & + & c_{2} z_{2}^{n} & + & \ldots & + & \alpha_{N-1} \\
N & z_{N}^{N} & & & \tau_{N} & \times 1
\end{array} \\
& \left(\begin{array}{c}
\vdots \\
c_{1} z_{1}^{2 N-1}+c_{2} z_{2}^{2 N-1}+\ldots+c_{N} z_{N}^{2 N-1} \\
=\tau_{2 N-1}
\end{array}\right. \\
& c_{1} P\left(z_{1}\right)+c_{2} P\left(z_{2}\right)+\cdots+c_{N} P\left(z_{N}\right)= \\
& \alpha_{0} \tau_{0}+\alpha_{1} \tau_{1}+\cdots+\cdots+\alpha_{N-1} \tau_{N-1}+\tau_{N} \\
& \alpha_{0} \tau_{0}+\alpha_{1} \tau_{1}+\cdots+\cdots+\alpha_{n-1} \tau_{n-1}=-\tau_{n} .
\end{aligned}
$$

Solving Prony's system

$$
\begin{aligned}
& P(Z):=\prod_{n=1}^{N}\left(Z-z_{n}\right)=Z^{N}+\sum_{n=0}^{N-1} \alpha_{n} Z^{n} . \\
& \left(\begin{array}{cccccccccc}
c_{1} & + & c_{2} & + & \ldots & + & c_{N} & = & \tau_{0} & \\
c_{1} z_{1} & + & c_{2} z_{2} & + & \ldots & + & c_{N} z_{N} & = & \tau_{1} & \times \alpha_{0} \\
c_{1} z_{1}^{2} & + & c_{2} z_{2}^{2} & + & \ldots & + & c_{N} z_{N}^{2} & = & \tau_{2} & \times \alpha_{1}
\end{array}\right. \\
& c_{1} z_{1}^{N-1}+c_{2} z_{2}^{N-1}+\ldots+c_{N} z_{N}^{N-1}=\tau_{N-1} \times \alpha_{N-2} \\
& c_{1} z_{1}^{N}+c_{2} z_{2}^{N}+\ldots+c_{N} z_{N}^{N}=\tau_{N} \times \alpha_{N-1} \\
& c_{1} z_{1}^{N+1}+c_{2} z_{2}^{N+1}+\ldots+c_{N} z_{N}^{N+1}=\tau_{N+1} \times 1 \\
& c_{1} z_{1}^{2 N-1}+c_{2} z_{2}^{2 N-1}+\ldots+c_{N} z_{N}^{2 N-1}=1 . \\
& c_{1} z_{1} P\left(z_{1}\right)+\cdots+c_{n} z_{n} P\left(z_{n}\right)=\alpha_{0} \tau_{1}+\alpha_{1} \tau_{2}+\cdots+\cdots+\alpha_{n-1} \tau_{n}+\tau_{n+1} \\
& \alpha_{0} \tau_{1}+\alpha_{1} \tau_{2}+\cdots+\cdots+\alpha_{n-1} \tau_{n}=-\tau_{n+1} .
\end{aligned}
$$

Solving Prony's system

$$
\left(\begin{array}{cccc}
\tau_{0} & \tau_{1} & \cdots & \tau_{n-1} \\
\tau_{1} & \tau_{2} & \cdots & \tau_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{n-1} & \tau_{n} & \cdots & \tau_{2 n-2}
\end{array}\right)\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n-1}
\end{array}\right)=-\left(\begin{array}{c}
\tau_{n} \\
\tau_{n+1} \\
\vdots \\
\tau_{2 n-1}
\end{array}\right) \Longleftrightarrow \mathbb{T}_{0} \boldsymbol{\alpha}=-\boldsymbol{\tau}^{\prime}
$$

