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Objective: sending incident waves and measuring the corresponding

scattered waves to find obstacles

NN~

Sensors ‘\_,/—\/\

Real problem: surface data in .

the time domain

Obstacle

T~
Treated problem: modal data
ut /\/\/ .

in the frequency domain

S n Obstacle

The total fields u = u® + u" satisfy (for ex. u" = u,} for n € N):

/

Au+k*u=0 inQ\O
O,u=0 on 0Jf
u=0 on 00

S

U 1s outgoing




Computing the modes

The modes : find v with separate variables (x,y) such that

f

(A+KkHu=0 in Q K

o,u=0 on Of) Q

\

¢wn and p, (n € N) : Neumann eigenfunctions and eigenvalues of the

1D operator —A in transverse section >

The ¢,, form a complete basis of L*(2) while
o =0 < 1 < pg < puz < -+ < thyp —> +00

Assumption on k : suppose k # /i, for all n € N

The modes : u; (x,y) = "%, (y), A = ir/k% — pin, for
n=20,---,P —1 (propagating modes) and )\, = —\/,un — k? for

n > P (evanescent modes)



The fundamental solution

For M’ € (), the solution to

/

(A4 EG( M) =6y in 0
\ 0,G(-,M')=0 on  Of)
G(-,M") is outgoing

is given by

Ap |z —a|

GM, M) == ——en(y)en(y)

neN n

A modal decomposition: for z > 2/,

/ 1 x —Anz’ /
G(M, M) = —ZKGM pn(y)e ’ pn(y) = —Z

mn n

1

muI(M)UE (M)

— if uS" is the scattered field for u' = u,, the scattered field u*(-, M)

for u' = G(-, M) is given by u®(M, M') = =5 3 Un ' (M), (M)



The Linear Sampling Method

The near-field operator :

(N L2(S_g) — L*(S_g)

h o N, (Nh)(M):/ (M, MYR(M') ds(M') M €5,

\

where u° (-, M) is the scattered field for v’ = G(-, M")
Property: for Z € ), we have G(-, Z)|s_, € Range(N) “«=" Z € O

Principle:
e solve equation Nh = G(-, Z)|s_, in L?(X_g) for all Z
o plot ¥(Z) = 1/||h(Z)||L2(x_,): indicator function of the defect

e obtain an “image” of the defect



The Linear Sampling Method (discretization)

Modal decomposition:

/ 1 S / 1 S
G(M,M):—ZKJ(M)U (M"Y, (M,M):—qu T (M)u, (M)

Projection on > _p :

uf1+|2_3 Z Smn Pm h = Z h; ¥n

meN neN

Near-field equation N'h = G(-, Z)|s_, in L?(X_g) is equivalent to

Discretization (far-field approximation): we restrict to

m,n=20,---, P —1, where P is the number of propagating modes

How general could be this approach ?



The junction of waveguides

Two half-waveguides

having different properties:

the fundamental solution G

is not simple any more —_

S+
n

Reference field r; for all n € N: diffracted solution associated with u,

in the presence of the junction only (no obstacle)

Near-field equation N'h = G(-, Z)|s_, in L?(X_g) is equivalent to

Vm € N, Z

neN

e)\n Am R

Stoh =

" +
Z
)\n >\m Tm( )

Remark: The reference fields ;| are pre-computed with a Finite
Element Method



Numerical experiments

e Number of propagating modes : P = 10 (large waveguide) and P = 8
(small waveguide)

e Exact data (left picture) and noisy data of amplitude 10% (right
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Numerics

Qo

-20

. junction of three waveguides

Number of propagating modes :
P(0) =13, P(1) =16 and P(2) = 12

Data on close Yy (left) and far >
(right)




A closed waveguide embedded in an infinite
medium

Objective : finding obstacles
from scattering measurements
using modes coming from the

free waveguide
A special case :

. KO . Moo
Co .= — C . — E—
0 PO > o P oo

Applications : a steel cable in concrete (civil engineering), a metallic

tube in a liquid (oil/gas industry)

Both the forward and the inverse problems are difficult !



Using transverse PMLs

We introduce Q= = (—00,0) x (=h,h), QT = (0, +00) X (—hout, hout)
and Q2 = Q" UXoUQT, with ¥g := {0} x (—h, h)
Problem : find u such that

v

Pu=0 inQ\O
O,u=0 on Jf2
u=0 on 00

u—u'  is outgoing

\
with
P=—0y(apdy-) — Ldpy - —LK?

o (a,u, k)= (1, o, ko) in the blue zone
o (a,u, k)= (1, o, koo) in the pink zone

o (a, 1, k) = (oo, oo, koo ) in the PML : a € C, arg(as) € (—Z,0)



The spectrum in the free/stratified waveguide
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o Left: free waveguide (cardinal red pentagons : propagating modes,

yellow triangles : evanescent modes)

e Right: embedded waveguide closed by truncated abrupt PMLs

(red circles : leaky modes, blue squares : PML modes)



Using longitudinal DtN operators

Pu = 0in Dy o
oou = 0ondDg\ (XoUXLUOO)
\ v = 0on 00
—uo0zu = Tou — 2,u08mui on X /- & \
\ 20,u = TruonXp J .

where
P=—0y(audy-) — Ldyy - —LK?

DtIN operators on > and > :

To = o= —p0deu (9)lze = 10 D pen An (9 Pn)L2(0)Pn
Ty @ L0,u™(¢)|s, (well-defined from unperturbed case)

—— An explicit expression of 77, is unknown !



Numerical experiments

Influence of the distance obstacle/interface:
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\

[ o (u) = Mr(e(u) Id + 241 e(u)

Extension to elasticity

S+
\_/_\_/_\/ uTI,
N /\/\/ .
un

S n Obstacle

e(u) = (Vu+ "Vu)/2

The total fields u = u® + u’ satisfy (for ex. u’ = u;} for n € N):

.

dive(u) + pw’u=0 inQ\O
o(u)-vr=0 on 9f2
u=0 on 00

S

u i1s outgoing

\

Guided modes : solutions in the form u(z,y) = e**u(y) to problem

y

divo(u) + pw’u=0 in Q
o(u)-v=0 on 0f)




Guided modes in elastodynamics

Hybrid variables (X,Y) :

uz(Um) U(U)-em:<_tm>
Uy ty
o (x\ [ o
oz \ v ] | Fy
Guided modes :

X;IL: _ X5 (y) e:|: An @
Y,,:i: Vi (y) ’
Bi-orthogonality and completeness :

(Xn|Ym)s = (UZ> tZI)E

X = Z (X|yn)ZXna
n>0

U:I: _ ug (y) €:|3>\n33
" +ul (y)

+ (ugv tZL)Z — 5nm7

n>0



Extended Green function

e The extended Green function G(-, M") satisfies

.

0 F Id, O
9 G M) = Y G M) = Sap 77 ] in Qg
ox Fx 0 0, Ids
oy (G, M) =0 t,(G(-,M))=0 on 0Qr

T Gy (M) =+Gx(-,M') on Xig,

/"

o A 4 x4 matrix :

G(M, M/) — —Z

mn

stz — 2 )X () TYn () X0 (y) T (y) eAnle—a’l
Vi (y) TVn(y) s(z — 2 )Vn(y) " Xn(y") 2

e Symmetry relationships :

GI(M, M) ="GS(M', M), GY(M,M')=-"G%(M', M)



The Linear Sampling Method again

Using the (X,Y) variables : for M’ € ¥_g, the scattered field
w3 (-, M') is associated with u’ = G, (-, M) (G : extended Green

function)

The near-field operator :

N (L*(2_r))” = (L*(2-r))"

/

h — Nh,  (Nh)(M) = X5 (M, M) -h(y)ds(M'), M € >_g

2_R

\

Near-field equation : for all Z € (2, solve in (LQ(Z_R))2
Nh = G?)/((WZ)‘Z_R P

by using the modal projection (p: polarization vector of R?)

Imaging the defect : plot ¥(Z) = 1/Hh(Z)H(L2(z ))2
—R



Extension a to solid /fluid interaction problem

Objective : scattering in an
elastic plate which is partially

immersed in a fluid

Displacement /velocity
potential (u, ) satisfies

"

div(c(u)) + w’psu=0 solid
Ap + k?«gp =0 fluid
o(u) -ns = —iwpsens  interface
—iw(u-ns) =V -ns interface
u=0 on dO
BC + RC

\

— We again use PMLs in the transverse direction



Real experiments at CEA /LIST

We apply the LMS to real surface data in the time domain

Thank you very much for

your attention !



