Franco-British (Complexified) Half-Space Matching

Simon Chandler-Wilde

Department of Mathematics and Statistics University of Reading, UK

Relais 4×60 :

É. Bécache, A.-S. Bonnet-Ben Dhia, C. Hazard, É. Lunéville
Ensta Paris, April 2014

Where is Reading?

Where is Reading?

...- University of
- Reading
It's near London

Where is Reading?

```
University of
Reading
It's near London
It's pretty famous for work internationally on weather and climate
```


Where is Reading?

University of
Reading
It's near London
It's pretty famous for work internationally on weather and climate E.g., today's newspaper headline ...

Where is Reading?

University of
 Reading

It's near London
It's pretty famous for work internationally on weather and climate
E.g., today's newspaper headline ...

Reading University denies causing flooding in Dubai
telegraph.co.uk

This talk introduces the main ideas from ...

This talk introduces the main ideas from ...

"The complex-scaled half-space matching method", A.-S. Bonnet-Ben Dhia, S. N. Chandler-Wilde, S. Fliss, C. Hazard, K.-M. Perfekt, \& Y. Tjandrawidjaja, SIAM J. Math. Anal. (2022)

This talk introduces the main ideas from ...

"The complex-scaled half-space matching method", A.-S. Bonnet-Ben Dhia, S. N. Chandler-Wilde, S. Fliss, C. Hazard, K.-M. Perfekt, \& Y. Tjandrawidjaja, SIAM J. Math. Anal. (2022)
as applied (in current work with Anne-Sophie and Sonia) to diffraction by a right-angled wedge.

BUT FIRST, some Relais 4×60 memories

These will be in English

BUT FIRST, some Relais $\mathbf{4} \times \mathbf{6 0}$ memories..

These will be in English or, in the recent words of French linguist Bernard Cerquiglini,

These will be in English or, in the recent words of French linguist Bernard Cerquiglini, in French, badly spoken

Bernard Cerquiglini « La langue anglaise n'existe pas"
C'est du français mal prononcé

Starting with a Relay Race par excellence, the Waves conference series ...

Starting with a Relay Race par excellence, the Waves conference series ...
Waves 3: Mandelieu-La Napoule in 1995: my first encounter with this équipe de poétes d'ondes, their great research, talks and students

Starting with a Relay Race par excellence, the Waves conference series ...
Waves 3: Mandelieu-La Napoule in 1995: my first encounter with this équipe de poétes d'ondes, their great research, talks and students

Waves 4: Golden, CO, USA in 1998: Anne-Sophie's fantastic plenary talk on the maths of (open) waveguides

Starting with a Relay Race par excellence, the Waves conference series ...

Waves 3: Mandelieu-La Napoule in 1995: my first encounter with this équipe de poétes d'ondes, their great research, talks and students

Waves 4: Golden, CO, USA in 1998: Anne-Sophie's fantastic plenary talk on the maths of (open) waveguides

Waves 8: Reading, UK in 2007: my chance to work with the POEMS team up close and personal

Starting with a Relay Race par excellence, the Waves conference series ...

Waves 3: Mandelieu-La Napoule in 1995: my first encounter with this équipe de poétes d'ondes, their great research, talks and students

Waves 4: Golden, CO, USA in 1998: Anne-Sophie's fantastic plenary talk on the maths of (open) waveguides

Waves 8: Reading, UK in 2007: my chance to work with the POEMS team up close and personal

Waves 13: Minneapolis, USA in 2017: I finally buy a phone with a camera

Waves 14 Vienna, Austria in 2019: I have to miss this one as Dean but follow the scores remotely ...

Waves comes home to Paris in 2022: we're finally together after Covid!

And, of course, I have memories of many joint research meetings ...

And, of course, I have memories of many joint research meetings ... in person ...

ENSTA, 8 January 2019 (Sonia's Habilitation Defense)

And, of course, I have memories of many joint research meetings ... in person ...

Oberwolfach, September 2022

And on Zoom 13/11/20 ...

And a week later ...

Franco-British (complexified) Half-Space Matching Method (HSMM)
and ongoing work with Anne-Sophie and Sonia on
Diffraction by Right-Angled Wedges ...

Diffraction by a (right-angled) wedge - the HSMM way

u satisfies S.R.C. at ∞

Point source $z \bullet$	$\Delta u+k^{2} u=\delta_{z}$ $x_{2} \uparrow$
	$u=0$

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...
u satisfies S.R.C. at ∞

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \quad \Omega \\
& u=g \quad \text { on } \quad \Sigma
\end{aligned}
$$

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...
u satisfies S.R.C. at ∞

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \quad \Omega \\
& u=g \quad \text { on } \quad \Sigma
\end{aligned}
$$

Solution is
where

$$
\begin{gathered}
u(x)=2 \int_{\Sigma} \frac{\partial \Phi(x, y)}{\partial y_{2}} g(y) \mathrm{d} s(y), \quad x \in \Omega, \\
\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|) .
\end{gathered}
$$

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...
u satisfies S.R.C. at ∞

$$
\Delta u+k^{2} u=\delta_{z} \quad \text { in } \quad \Omega
$$

$$
\text { Point source } z \bullet \quad u=g \quad \text { on } \quad \Sigma
$$

Solution is
where

$$
\begin{gathered}
u(x)=2 \int_{\Sigma} \frac{\partial \Phi(x, y)}{\partial y_{2}} g(y) \mathrm{d} s(y), \quad x \in \Omega \\
\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|)
\end{gathered}
$$

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...
u satisfies S.R.C. at ∞

$$
\Delta u+k^{2} u=\delta_{z} \quad \text { in } \quad \Omega
$$

$$
\begin{array}{ll}
\text { Point source } z \bullet & u=g \quad \text { on } \quad \Sigma \\
\hline
\end{array}
$$

Solution is
where

$$
u(x)=G(x, z)+2 \int_{\Sigma} \frac{\partial \Phi(x, y)}{\partial y_{2}} g(y) \mathrm{d} s(y), \quad x \in \Omega
$$

$$
G(x, z):=\Phi(x, z)-\Phi\left(x, z^{\prime}\right), \quad \Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|) .
$$

Diffraction by a (right-angled) wedge - the HSMM way

u satisfies S.R.C. at ∞

$$
\Delta u+k^{2} u=\delta_{z} \quad \Omega_{1}
$$

Point source $z \bullet$

$$
u=0
$$

Diffraction by a (right-angled) wedge - the HSMM way

Ω_{1}

Point source $z \bullet$

$$
u=0
$$

$$
u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Omega_{1} .
$$

Diffraction by a (right-angled) wedge - the HSMM way

Diffraction by a (right-angled) wedge - the HSMM way

Diffraction by a (right-angled) wedge - the HSMM way

Diffraction by a (right-angled) wedge - the HSMM way

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J. Appl. Math. 2022) if one requires, additionally, that

$$
u(x)=a_{m} \mathrm{e}^{\mathrm{i} k r} r^{-1 / 2}+O\left(r^{-3 / 2}\right), \quad \text { as } r:=|x| \rightarrow \infty \text { with } x \in \Sigma_{m}, \quad m=0,1 .
$$

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J. Appl. Math. 2022) if one requires, additionally, that $u(x)=a_{m} \mathrm{e}^{\mathrm{i} k r} r^{-1 / 2}+O\left(r^{-3 / 2}\right), \quad$ as $r:=|x| \rightarrow \infty$ with $x \in \Sigma_{m}, \quad m=0,1$. Let $\varphi_{0}(s):=u((0, s))$ and $\varphi_{1}(s):=u((s, 0))$, for $s \geq 0$.

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J. Appl. Math. 2022) if one requires, additionally, that

$$
u(x)=a_{m} \mathrm{e}^{\mathrm{i} k r} r^{-1 / 2}+O\left(r^{-3 / 2}\right), \quad \text { as } r:=|x| \rightarrow \infty \text { with } x \in \Sigma_{m}, \quad m=0,1 .
$$

Let $\varphi_{0}(s):=u((0, s))$ and $\varphi_{1}(s):=u((s, 0))$, for $s \geq 0$. Then, explicitly the above equations are ...

The HSMM integral equations

$$
\begin{aligned}
& \varphi_{0}(s)=\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
& \varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0,
\end{aligned}
$$

The HSMM integral equations

$$
\begin{aligned}
& \varphi_{0}(s)=\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
& \varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0,
\end{aligned}
$$

with

$$
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1
$$

The HSMM integral equations

$$
\begin{aligned}
\varphi_{0}(s) & =\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{1}(s) & =\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

with

$$
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1
$$

and

$$
\psi(s):=\frac{\mathrm{i}}{4} H_{0}^{(1)}\left(k \sqrt{\left(s-z_{2}\right)^{2}+z_{1}^{2}}\right)-\frac{\mathrm{i}}{4} H_{0}^{(1)}\left(k \sqrt{\left(s+z_{2}\right)^{2}+z_{1}^{2}}\right), \quad s \geq 0
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \quad \psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{0}(s)=\quad \sum_{1} \\
\varphi_{1}(s)=\quad \frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1
\end{gathered}
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1 .
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)= \\
\varphi_{1}(s)= \\
\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{\Sigma_{1}}{2} \int_{0}^{\infty} \frac{\Sigma_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0,
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)= \\
\varphi_{1}(s)= \\
\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{\Sigma_{0}}{2} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0,
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$
2. Rotating the paths of integration we get ...

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\psi(s)+\frac{\Sigma_{0}}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0, \\
\varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0,
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$
2. Rotating the paths of integration we get ...

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\quad \psi(s)+\frac{\Sigma_{0}}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0, \\
\varphi_{1}(s)=\frac{\Sigma_{1}}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0,
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$
2. Rotating the paths of integration we get ...
3. Introducing φ_{m}^{θ} and ψ^{θ} defined by $\varphi_{m}^{\theta}(r):=\varphi_{m}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$ and $\psi^{\theta}(r):=\psi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$, these equations are ...

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\Sigma_{0}}{2} \mathrm{e}^{\mathrm{i} \theta} \int_{0}^{\infty} \frac{\Sigma_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$
2. Rotating the paths of integration we get ...
3. Introducing φ_{m}^{θ} and ψ^{θ} defined by $\varphi_{m}^{\theta}(r):=\varphi_{m}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$ and $\psi^{\theta}(r):=\psi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$, these equations are ...

The Complex-Scaled HSMM integral equations

$$
\Omega_{1}
$$

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\Sigma_{1}}{\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0,} \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta \sqrt{s^{2}+t^{2}}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\Omega_{1} \\
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\Sigma_{1} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y)
$$

The Complex-Scaled HSMM integral equations

$$
\Omega_{1}
$$

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0} \Sigma_{1} \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}} \varphi_{1}(t) \mathrm{d} t
\end{aligned}
$$

The Complex-Scaled HSMM integral equations

$$
\Omega_{1}
$$

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\psi_{1}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k x_{2}}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}} \varphi_{1}(t) \mathrm{d} t
\end{aligned}
$$

The Complex-Scaled HSMM integral equations

$$
\Omega_{1}
$$

$$
\begin{gathered}
\text { Point source } z \cdot \\
\Sigma_{1} \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}} \varphi_{1}^{\theta}(r) \mathrm{d} r
\end{aligned}
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
x \cdot \Omega_{1} \\
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}} \varphi_{1}^{\theta}(r) \mathrm{d} r,
\end{aligned}
$$

as long as $x_{2}>\tan (\theta) x_{1}$.

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
x \cdot \Omega_{1} \\
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}} \varphi_{1}^{\theta}(r) \mathrm{d} r,
\end{aligned}
$$

as long as $x_{2}>\tan (\theta) x_{1}$. So take $\theta<\pi / 4$.

But why use the CS HSMM integral equations?

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\Sigma_{0} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

But why use the CS HSMM integral equations?

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\Sigma_{0}}{2} \mathrm{e}^{\mathrm{i} \theta} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

Key feature. For some constant $C_{\theta}>0$,

$$
\left|\varphi_{m}^{\theta}(s)\right| \leq C_{\theta} \exp (-k \sin (\theta)), \quad s \geq 0, \quad m=0,1
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
& \varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
& \varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{aligned}
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
\varphi_{0}^{\theta}(s) & =\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{1}^{\theta}(s) & =\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

Written in operator form these are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
& \varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 \\
& \varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

Written in operator form these are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}, \quad \text { i.e., } \quad\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}=\binom{\psi^{\theta}}{0}+\mathbf{D}^{\theta}\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
\varphi_{0}^{\theta}(s) & =\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{1}^{\theta}(s) & =\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

Written in operator form these are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}, \quad \text { i.e., } \quad\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}=\binom{\psi^{\theta}}{0}+\mathbf{D}^{\theta}\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}
$$

Theorem. As an operator on $L^{2}\left(\mathbb{R}_{+}\right), D^{\theta}=D_{0}+D_{1}^{\theta}$ where D_{1}^{θ} is compact and

$$
\left\|D_{0}\right\|=\frac{1}{\sqrt{2}}, \quad\left\|D_{1}^{\theta}\right\| \leq \frac{\sqrt{1-\mathrm{e}^{-\pi \sin (\theta)}}}{4 \sqrt{\pi} \sin (\theta)}
$$

so that $\left\|\mathbf{D}^{\theta}\right\|=\left\|D^{\theta}\right\| \leq\left\|D_{0}\right\|+\left\|D_{1}^{\theta}\right\|<1$ if

$$
\theta>\sin ^{-1}(p / \pi) \approx 0.13438 \pi
$$

where p is the unique positive solution of

$$
\pi-\pi \mathrm{e}^{-p}=8(3-2 \sqrt{2}) p^{2}
$$

But why use the CS HSMM integral equations?

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Theorem. As an operator on $L^{2}\left(\mathbb{R}_{+}\right), D^{\theta}=D_{0}+D_{1}^{\theta}$ where D_{1}^{θ} is compact and

$$
\left\|D_{0}\right\| \leq \frac{1}{\sqrt{2}}, \quad\left\|D_{1}^{\theta}\right\| \leq \frac{\sqrt{1-\mathrm{e}^{-\pi \sin (\theta)}}}{4 \sqrt{\pi} \sin (\theta)}
$$

so that $\left\|\mathbf{D}^{\theta}\right\|=\left\|D^{\theta}\right\| \leq\left\|D_{0}\right\|+\left\|D_{1}^{\theta}\right\|<1$ if

$$
\theta>\sin ^{-1}(p / \pi) \approx 0.13438 \pi
$$

where p is the unique positive solution of

$$
\pi-\pi \mathrm{e}^{-p}=8(3-2 \sqrt{2}) p^{2}
$$

As a consequence, if

$$
0.13438 \pi<\theta<0.25 \pi
$$

u can be recovered from φ_{0}^{θ} and φ_{1}^{θ}, and $\left\|\mathbf{D}^{\theta}\right\|<1$ so Neumann iteration converges

But why use the CS HSMM integral equations?

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Theorem. As an operator on $L^{2}\left(\mathbb{R}_{+}\right), D^{\theta}=D_{0}+D_{1}^{\theta}$ where D_{1}^{θ} is compact and

$$
\left\|D_{0}\right\| \leq \frac{1}{\sqrt{2}}, \quad\left\|D_{1}^{\theta}\right\| \leq \frac{\sqrt{1-\mathrm{e}^{-\pi \sin (\theta)}}}{4 \sqrt{\pi} \sin (\theta)}
$$

so that $\left\|\mathbf{D}^{\theta}\right\|=\left\|D^{\theta}\right\| \leq\left\|D_{0}\right\|+\left\|D_{1}^{\theta}\right\|<1$ if

$$
\theta>\sin ^{-1}(p / \pi) \approx 0.13438 \pi
$$

where p is the unique positive solution of

$$
\pi-\pi \mathrm{e}^{-p}=8(3-2 \sqrt{2}) p^{2}
$$

As a consequence, if

$$
0.13438 \pi<\theta<0.25 \pi
$$

u can be recovered from φ_{0}^{θ} and φ_{1}^{θ}, and $\left\|\mathbf{D}^{\theta}\right\|<1$ so Neumann iteration converges, and Galerkin methods are convergent and quasi-optimal:

Error in Galerkin solution $\leq \frac{\left\|\mathbf{D}^{\theta}\right\|}{1-\left\|\mathbf{D}^{\theta}\right\|}$ Best approximation from Galerkin subspace

The CS HSMM integral equations: numerical results

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

The CS HSMM integral equations: numerical results

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.

The CS HSMM integral equations: numerical results

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
The discrete unknowns are $N \times 1$ vectors $\varphi_{m}^{\theta}, m=0,1$, approximations to the true values at the collocation points, that satisfy

$$
\boldsymbol{\varphi}_{0}^{\theta}=\boldsymbol{\psi}^{\theta}+D_{N}^{\theta} \boldsymbol{\varphi}_{1}^{\theta}, \quad \boldsymbol{\varphi}_{1}^{\theta}=D_{N}^{\theta} \boldsymbol{\varphi}_{0}^{\theta}
$$

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.24 \pi$.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.27 \pi$.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.29 \pi$.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.24 \pi$.

What can the CS HSMM do apart from wedges?

What can the CS HSMM do apart from wedges?

Polygons with Dirichlet (or other b.c.'s) in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss, Hazard, Perfekt, Tjandrawidjaja, SIAM J. Math. Anal. 2022.

What can the CS HSMM do apart from wedges?

Arbitrary inhomogeneity in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss, Hazard, Perfekt, Tjandrawidjaja, SIAM J. Math. Anal. 2022.

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., scalar problem with complex background, Ott, Karlsruhe IT, PhD, 2017

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Phys., 2023

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Phys., 2023

Open problems for the CS HSMM include:

- complete numerical analysis, and bounds for other wedge angles and b.c.'s;

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Phys., 2023

Open problems for the CS HSMM include:

- complete numerical analysis, and bounds for other wedge angles and b.c.'s;
- application of HSMM (and its CS version) to transmission wedge problems;

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Phys., 2023

Open problems for the CS HSMM include:

- complete numerical analysis, and bounds for other wedge angles and b.c.'s;
- application of HSMM (and its CS version) to transmission wedge problems;
- CS HSMM formulations for problems with more complex backgrounds.

So Happy 60th Éliane, Anne-Sophie, Christophe, Éric

Congratulations on ...

- Your excellent research over many years - e.g., the references above!
- The fantastic team you've built - countless superb students, the future leaders you've developed

So Happy 60th Éliane, Anne-Sophie, Christophe, Éric

Congratulations on ...

- Your excellent research over many years - e.g., the references above!
- The fantastic team you've built - countless superb students, the future leaders you've developed

And here's wishing you all the best, for a happy, successful, and productive future!

