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de poétes d’ondes, their great research, talks and students

Waves 4: Golden, CO, USA in 1998: Anne-Sophie’s fantastic plenary talk on
the maths of (open) waveguides

Waves 8: Reading, UK in 2007: my chance to work with the POEMS team up
close and personal

Waves 13: Minneapolis, USA in 2017: I finally buy a phone with a camera

.



Starting with a Relay Race par excellence, the Waves conference series ...

Waves 3: Mandelieu-La Napoule in 1995: my first encounter with this équipe
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And, of course, I have memories of many joint research meetings ...

in person ...

Oberwolfach, September 2022



And on Zoom 13/11/20 ...

.



And a week later ...

.



But enough of that ... back to the

Franco-British (complexified) Half-Space Matching Method (HSMM)

and ongoing work with Anne-Sophie and Sonia on

Diffraction by Right-Angled Wedges ...



Diffraction by a (right-angled) wedge – the HSMM way

Point source z

∆u+ k2u = δz, k > 0

u = 0

u satisfies S.R.C. at ∞

x1

x2



The Half-Space Matching Method Philosophy

1 It is easy to solve explicitly Dirichlet problems in half-planes.
2 So express your solution in each of a number of overlapping half-planes using

this explicit solution.
3 The HSMM equations are obtained by enforcing compatibility between

these different half-plane representations.

Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018

Step 1. Let’s solve the simplest half-plane problem ...

∆u+ k2u = 0 in Ω

u = g on Σ

u satisfies S.R.C. at ∞

Solution is

u(x) = 2

∫
Σ

∂Φ(x, y)

∂y2
g(y) ds(y), x ∈ Ω,

where

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|).
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The HSMM integral equations

Point source z

u = 0

Σ1

Σ0

Two integral equations for unknowns u|Σ0 and u|Σ1 :

u(x) = G(x, z) + 2

∫
Σ1

∂Φ(x, y)

∂y2
u(y) ds(y), x ∈ Σ0,

u(x) = 2

∫
Σ0

∂Φ(x, y)

∂y1
u(y) ds(y), x ∈ Σ1.

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J.
Appl. Math. 2022) if one requires, additionally, that

u(x) = ameikrr−1/2 +O(r−3/2), as r := |x| → ∞ with x ∈ Σm, m = 0, 1.

Let φ0(s) := u((0, s)) and φ1(s) := u((s, 0)), for s ≥ 0. Then, explicitly the
above equations are . . .
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complex plane, so, for 0 < θ < π/2, . . .
2. Rotating the paths of integration we get . . .
3. Introducing φθ

m and ψθ defined by φθ
m(r) := φm(reiθ) and ψθ(r) := ψ(reiθ),

these equations are . . .
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π sin(θ)
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so that ∥Dθ∥ = ∥Dθ∥ ≤ ∥D0∥+ ∥Dθ
1∥ < 1 if

θ > sin−1(p/π) ≈ 0.13438π,

where p is the unique positive solution of

π − πe−p = 8(3− 2
√
2)p2.
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The CS HSMM integral equations: numerical results

The equations in operator form are

φθ
0 = ψθ +Dθφθ

1, φθ
1 = Dθφθ

0

Approximate the integral operator Dθ by an N ×N matrix Dθ
N by approximating∫ ∞

0

≈
∫ L

0

≈ Midpoint rule with N subintervals

and by collocating at the midpoints of the subintervals.

The discrete unknowns are N × 1 vectors φθ
m, m = 0, 1, approximations to the

true values at the collocation points, that satisfy

φθ
0 = ψθ +Dθ

Nφ
θ
1, φθ

1 = Dθ
Nφ

θ
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What can the CS HSMM do apart from wedges?

Polygons with Dirichlet (or other b.c.’s) in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss, Hazard, Perfekt, Tjandrawidjaja, SIAM J. Math. Anal.
2022.
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What can the CS HSMM do apart from wedges?

Arbitrary inhomogeneity in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss, Hazard, Perfekt, Tjandrawidjaja, SIAM J. Math. Anal.
2022.



Conclusions and Open Problems

The CS HSMM an attractive formulation for computation of scattering by wedges
(with a variety of boundary conditions)

The method equally attractive for scattering by polygons, indeed (through coupling
to a local FEM solve) to any local perturbation of a homogeneous medium

The HSMM (without CS) already well-established for a range of scattering
problems in complex media, e.g.,

Open problems for the CS HSMM include:

complete numerical analysis, and bounds for other wedge angles and b.c.’s;

application of HSMM (and its CS version) to transmission wedge problems;

CS HSMM formulations for problems with more complex backgrounds.
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