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“The complex-scaled half-space matching method”, A.-S. Bonnet-Ben Dhia,
S. N. Chandler-Wilde, S. Fliss, C. Hazard, K.-M. Perfekt, & Y. Tjandrawidjaja,

SIAM J. Math. Anal. (2022)
as applied (in current work with Anne-Sophie and Sonia) to diffraction by a

right-angled wedge.
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Cerquiglini, in French, badly spoken

Bernard Cerquiglini
«La langue anglaise
n'‘existe pas»

C'est du francais mal prononcé
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And a week later
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sense, with D a well-defined bounded linear operator. Consequently, we are not able
to justify the mumerical method and neither provide a priori error estimates.

These diffculties with the standard formulation for rcal £ are part of the moti-
vation for the method proposed in this paper that we term the comples-scaled HSM
method. The iden behind this method, shich is similar to the idea behind PML.
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But enough of that ... back to the
Franco-British (complexified) Half-Space Matching Method (HSMM)
and ongoing work with Anne-Sophie and Sonia on

Diffraction by Right-Angled Wedges ...
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Step 1. Let's solve the simplest half-plane problem ...

U satisfies S.R.C. at 0O
Au+ku=6, in

Point source z® u=g¢g on X
Z'e
Solution is
0P
ue) = 6o +2 [ Dy asy), wen
where s Oy

G(x,2) = ®(z,2) — P(x,2), @(v,y):= iHo(l)(lﬂx — ).
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u(z) = G(z, z) + 2/21
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u(z) = 2/2 0%(z,y) u(y)ds(y), = €.
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ur) = o)t [ 0V an), sen,
o1 Y2
_ 0% (x,y)
u(z) = 2/EU o u(y)ds(y), « € X.

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J.
Appl. Math. 2022) if one requires, additionally, that

w(x) = ame* r V2 L 0(r=%?), asr:=|z| > cowithz e, m=0,1.

Let @o(s) :==u((0,s)) and v1(s) := u((s,0)), for s > 0. Then, explicitly the
above equations are . ..



The HSMM integral equations

1 20
Point source 2z * : op
u=20
1k:s H; (1) (kvs? +t2
oo(s) = o[ AR e sz
S +t

1l<:s H(” (kvVs2 + £2)
pi(s) =

N ————po(t)dt, s>0,



The HSMM integral equations

with

20
Point source z ¢ : op
u=0
1k:s H; (1) (kvs? +t2
oo(s) = o[ AR e sz
1l<:s H(” (kV/s2 + 2
o1ls) = A S dr, sz o
Pm(s) = ame™s™/2+0(s7?), ass =00, m=0,1,



The HSMM integral equations

1 20
Point source z ¢ : op
u=>0
1k:s H; (1) (kvs? +t2
oo(s) = o[ AR e sz
1l<:s H(” (kV/s2 + 2
o1ls) = A S dr, sz o
with .
Pm(s) = ame™s™/2+0(s7?), ass =00, m=0,1,
and

P(s) = iHél) (k (s —29)2 + z%) - iHél) (k (s+22)2 + zf) , s>0.
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Point source 2z * | PO
|

= _— t)dt = ,/iH. >0

pols) = wls) + e =z,
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S = _ - 7
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1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane, so, for 0 < 0 < 7/2, ...

2. Rotating the paths of integration we get ...

3. Introducing Y and 1? defined by % (r) := ¢, (re!?) and ¥?(r) := ¥(rel?),
these equations are ...

l’fS/oc HY (by/52 5 )
0

wo(t)dt, s=rel? >0,
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1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane, so, for 0 < 0 < 7/2, ...

2. Rotating the paths of integration we get ...

3. Introducing %, and ¢ defined by % (1) := ¢, (re!) and ¥?(r) := (rel?),
these equations are ...
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ikei(’s o H(l)(k: 0s2+12)

(p(e)(s) - 77[}6(5) + m 901(15) dtv
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We can recover u: for example for z € Qq,

0% (z,y)

u(z) = G(z,z)+2
@ = G2 o

u(y) ds(y)
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Point source z ¢ 4

i (1 N
0 W 1k:e95/ H; Vs +12) ,
s) = t)dt,
©o(s) 32 N ©1(t)
ik i0 H(l) k i0 2 +2
A = T [FIEE D g s20
2 0 V2 +t2
We can recover u: for example for x € Q,
0P (x,y
u@) = G +2 [ 220 as)
o 0y

1kx2/ HD k\/x + (t—21)?

t — (El)2
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Point source 2 ¢ ¥
i0 (1) 2 2
0 - 1ke s H, s2412) 4
eol(s) = / N (1) dt, s =0,
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Al = e / LV ) a5z 0
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Point source 2z *
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W 1keles H(1 Vs +12) ,
32

Vs + 2

2
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00(z, y)
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2 0
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HO)

u(z) =

as long as zo

Point source 2 ¢

1ke105 H(1 Vs +12)
52

H{”(kewm) ]

Vs + 2

G(x,z) +

ikel? s /
2 Jo

We can recover u: for example for x € Qq,

Gz, z) +2/E Mu

Vs2 2 70

)

(y) ds(y)

D(ky/a3 + (7 —21)?)

ikel? 2, /°° H
2 0

> tan(6) z.

\/asg + (el — xq)?
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@o(s)
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Point source 2 ¢ p
/ﬂ\ >

W 1ke105 H(1 Vs +12) ,
52

2
ikel’s H{l)(kew\/s2 +t2) ,
wo(t)dt, s>0
2 Jo Vs? 4+ t2

We can recover u: for example for x € Qq,

u(z) =

as long as zo

G(z,2) + 2/2 Wu(y) ds(y)

ikel%zo [ HM (ky/23 + (0r — 21)2)
G, 2) + / \2/ - i0 2 i
Vo3 + (efr —xy)

> tan(f) z1. So take 6 < /4.

pit)dt, s>0,

Y1 (’I") d’l",



But why use the CS HSMM integral equations?

Point source z ¢

o (s) + ikel’ s /°° HY (ke?/s% 1 12)
2 J JEI B

s — ke’ s /°° H" (ks 1 2)
2 Jo Vs 12

AS

oo

—~~
Va)

N
|

gog(t) dt, s>0.



But why use the CS HSMM integral equations?

Point source z ¢

ikei(’s o H(l)(k: 0Vs2+12)

(p(e)(s) = 77[}6(5) + \/m 901(25) dtv
1kelgs H(1 ke19 52+ t2
O e e CLE)

Key feature. For some constant Cy > 0,

|60, (5)] < Coexp(—ksin(8)), s>0, m=0,1
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ol(s) = po(t)dt, s>0.

V2 12
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 Loail (1) 2 2
vols) = ¢9(8)+1ke 8/ . m)w(f(t)dt, s >0,

Vs? +t?
ikel?s H(1 (kel?\/s2 4 2)
I e LT

Written in operator form these are

0 0 0 0 0 0.6 - 90(9) ”9/19 o ¥
®o :77& +D P15 ¥1 =D #os 1.e., 0 = 0 +D
¥1 2
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 Loail (1) 2 2
wols) = w‘)<8)+1ke 8/ A m)wg(t)dt, s>0,

Vs? +t? !
ikel?s H(1 (kel?\/s2 4 2)
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Written in operator form these are

0 21,0
0o ="+ DY, i =D¢p, e, <“Q )(% )+D9<%>
Y1 o1

Theorem. As an operator on L2(R..), D = Dy + DY where DY is compact and
1 1 — e—msin(0)
Do|| = —=, |ID}| < —rr—
|| 0” \/57 H 1H = 4ﬁsm(9) )
so that |[D”]| = ||D”|| < || Dol + [ D]l < 1if
6 > sin~ ! (p/7) ~ 0.13438,
where p is the unique positive solution of

T —me P = 8(3 — 2v2)p?

O
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u can be recovered from 9 and ©{, and | D?|| < 1 so Neumann iteration
converges



But why use the CS HSMM integral equations?

The equations in operator form are

b ="+ D%, ] =D

Theorem. As an operator on L2(R,), D’ = Dy + DY where D{ is compact and

IDall < . 1D}l < M
so that DY = | D[l < || Dol + DY < 1 if
0 > sin~!(p/m) ~ 0.13438,
where p is the unique positive solution of
T —me P =8(3 - 2V2)p?.
As a consequence, if
0.134387 < 6 < 0.257,

u can be recovered from 9 and ©{, and | D?|| < 1 so Neumann iteration
converges, and Galerkin methods are convergent and quasi-optimal:

1D

Error in Galerkin solution < ————
1 —||D?||

Best approximation from Galerkin subspace
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The CS HSMM integral equations: numerical results

The equations in operator form are
0o =9’ + D%, o] = D¢}

Approximate the integral operator DY by an N x N matrix D%, by approximating

o) L
/ ~ / ~ Midpoint rule with N subintervals
0 Jo

and by collocating at the midpoints of the subintervals.

The discrete unknowns are N x 1 vectors ¢! , m = 0,1, approximations to the
true values at the collocation points, that satisfy

oo =v" + D!, ] =Dl
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Approximate the integral operator DY by an N x N matrix DY; by approximating
oo L
/ %/ ~ Midpoint rule with N subintervals
0 0

and by collocating at the midpoints of the subintervals.

4
Results for L = 3 wavelengths = %, N =20, 60=0.24r.
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What can the CS HSMM do apart from wedges?

Polygons with Dirichlet (or other b.c.’s) in homogeneous medium
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See Bonnet-Bendhia, C-W, Fliss, Hazard, Perfekt, Tjandrawidjaja, SIAM J. Math
2022.

. Anal.



What can the CS HSMM do apart from wedges?

Arbitrary inhomogeneity in homogeneous medium
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See Bonnet-Bendhia, C-W, Fliss, Hazard, Perfekt, Tjandrawidjaja, SIAM J. Math. Anal.
2022.
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@ The CS HSMM an attractive formulation for computation of scattering by wedges
(with a variety of boundary conditions)

@ The method equally attractive for scattering by polygons, indeed (through coupling
to a local FEM solve) to any local perturbation of a homogeneous medium
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Conclusions and Open Problems

@ The CS HSMM an attractive formulation for computation of scattering by wedges
(with a variety of boundary conditions)

@ The method equally attractive for scattering by polygons, indeed (through coupling
to a local FEM solve) to any local perturbation of a homogeneous medium

@ The HSMM (without CS) already well-established for a range of scattering
problems in complex media, e.g., crack in anisotropic elastic medium, Bécache,
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Phys., 2023

Open problems for the CS HSMM include:
@ complete numerical analysis, and bounds for other wedge angles and b.c.’s;
@ application of HSMM (and its CS version) to transmission wedge problems;

@ CS HSMM formulations for problems with more complex backgrounds.
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