A contrast source inversion method for the reconstruction of electrical properties

Stephanie Lohrengel

Charlotte Milano, Stéphanie Salmon

LMR CNRS UMR 9008, Université Reims Champagne Ardenne, France

Journée Ondes des poètes, Avril 17-19, ENSTA

Funding from ANR ELECTRA, grant ANR-21-CE19-0040.

S. Lohrengel JO des poètes 2024

- Medical context
- The forward problem
- Contrast source inversion
- Conclusion

日本・モン・

Aim

Reconstruct the electrical properties (permittivity and conductivity) of the tissues in the human brain from radio-frequency measurements obtained by magnetic resonance imaging (MRI).

 \rightsquigarrow disease detection \rightsquigarrow safety standards

ANR Project ELECTRA : IADI (INSERM, Nancy), CHRU Nancy, Healtis (Nancy), ICUBE (Strasbourg), LMR (Reims)

numerical methods for precise reconstruction of electric properties & database with respect to age

Magnetic resonance imaging (MRI)

Principle :

- strong static magnetic field B_0 , e.g. 3T
- excitation of hydrogen protons through radiofrequency (RF) pulse at Larmor frequency, e.g. 128 MHz at 3T
- emission of e.m. signal when protons return to initial state
- $\Rightarrow\,$ picture of biological tissues containing water

Birdcage coil : a typical configuration of RF antenna

Maxwell's equations

time-harmonic Maxwell's equations at fixed angular frequency ω with linear isotropic constitution laws, Ohm's law and scaling wrt electric permittivity ε_0 and magnetic permeability μ_0 in free space

$$\Rightarrow \qquad \mathcal{E}(\mathbf{x},t) = \mathfrak{R}e\left(e^{-i\omega t}\sqrt{\varepsilon_0}\mathbf{E}\right), \ \mathcal{H}(\mathbf{x},t) = \mathfrak{R}e\left(e^{-i\omega t}\sqrt{\mu_0}\mathbf{H}\right)$$

$$-ik\varepsilon_r \mathbf{E} - \operatorname{curl} \mathbf{H} = -\sqrt{\mu_0} \mathbf{J}_s$$
$$-ik\mu_r \mathbf{H} + \operatorname{curl} \mathbf{E} = 0$$

with source term \mathbf{J}_s , wave number $k = \omega \sqrt{\varepsilon_0 \mu_0}$ and relative electromagnetic parameters

$$\varepsilon_r = \frac{1}{\varepsilon_0} \left(\varepsilon + \frac{i\sigma}{\omega} \right), \ \mu_r = \frac{\mu}{\mu_0}.$$

Elimination of H :

$$\operatorname{curl} \mu_r^{-1} \operatorname{curl} \mathbf{E} - k^2 \varepsilon_r \mathbf{E} = i k \sqrt{\mu_0} \mathbf{J}_s$$

Two-dimensional transverse magnetic setting and $\mu_r = 1$:

Perfect conductor boundary condition in a bounded domain Ω :

$$\begin{cases} -\Delta E - k^2 \varepsilon_r E = F & \text{in } \Omega, \\ E = 0 & \text{on } \partial \Omega. \end{cases}$$

(4 同) (4 日) (4 日)

Perturbation due to the presence of an object

Assume that $k^2 \notin \operatorname{sp}(-\Delta^{\operatorname{Dir}})$.

Reference configuration : no object $\Rightarrow \varepsilon_r = 1$. Source term *F*.

$$\begin{cases} -\Delta E^{\text{ref}} - k^2 E^{\text{ref}} &= F \quad \text{in } \Omega, \\ E^{\text{ref}} &= 0 \quad \text{on } \partial \Omega. \end{cases}$$
(1)

Configuration with object : assume that $supp(1 - \varepsilon_r) \subset D$ where $D \subset \Omega$. $\Im m \varepsilon_r > 0$ on some part of D. Same source term F.

$$\begin{cases} -\Delta E^{\text{tot}} - k^2 \varepsilon_r E^{\text{tot}} = F & \text{in } \Omega, \\ E^{\text{tot}} = 0 & \text{on } \partial \Omega. \end{cases}$$
(2)

Forward problem

Let E^{ref} be the solution to (1) for given F. For given ε_r , find the scattered field $E^{\text{sc}} = E^{\text{tot}} - E^{\text{ref}}$, solution to

$$\begin{bmatrix} -\Delta E^{\rm sc} - k^2 \varepsilon_r E^{\rm sc} &= -k^2 (1 - \varepsilon_r) E^{\rm ref} & \text{in } \Omega, \\ E^{\rm sc} &= 0 & \text{on } \partial \Omega. \end{bmatrix}$$
(3)

S. Lohrengel JO des poètes 2024

Inverse problem as a parameter problem

Let E^{ref} be the solution to (1) for given F.

For given measurements f^{data} on $D \subset \Omega$, find ε_r such that the scattered field E^{sc} , solution to (3), satifies $E_{|D}^{\text{sc}} = f^{\text{data}}$.

 \rightsquigarrow resolution by minimization of a least square functional of the data error.

Difficulty : inverse parameter problem, the differential operator in (3) depends on ε_r .

$$\begin{cases} -\Delta E^{\rm sc} - k^2 \varepsilon_r E^{\rm sc} = -k^2 (1 - \varepsilon_r) E^{\rm ref} & \text{in } \Omega, \\ E^{\rm sc} = 0 & \text{on } \partial \Omega. \end{cases}$$

$$\begin{cases} -\Delta E^{\rm sc} - k^2 E^{\rm sc} = -k^2 (1 - \varepsilon_r) E^{\rm tot} & \text{in } \Omega, \\ E^{\rm sc} = 0 & \text{on } \partial \Omega. \end{cases}$$
(4)

Inverse problem as a non-linear source problem

Let E^{ref} be the solution to (1) for given F.

For given measurements f^{data} on $D \subset \Omega$, find $(\varepsilon_r, E^{\text{tot}})$ defined on Ω , such that the scattered field E^{sc} , solution to (4), satisfies the following system

$$\left\{ egin{array}{ccc} E_{|D}^{
m sc} &=& f^{
m data} & \mbox{[data equation]} \ E^{
m ref} + E^{
m sc} &=& E^{
m tot} & \mbox{[state equation]} \end{array}
ight.$$

 \rightsquigarrow resolution by minimization of a least square functional of the weighted data and state error.

The inverse problem as contrast source inversion

Let $\chi = 1 - \varepsilon_r$ the contrast function and $w = \chi E^{\text{tot}}$ the contrast source.

Problem (4)
$$\Rightarrow -\Delta E^{\rm sc} - k^2 E^{\rm sc} = -k^2 \underbrace{(1 - \varepsilon_r) E^{\rm tot}}_{=\chi E^{\rm tot} \stackrel{\rm def}{=} w}$$
 in Ω .

Linear solution operator $\begin{array}{rcl} \mathcal{L}_{b} & : & \mathcal{L}^{2}(\Omega) & \rightarrow & \mathcal{H}^{1}_{0}(\Omega) \\ & & & & \mapsto & E^{\mathrm{sc}} \end{array}$ where $E^{\mathrm{sc}} \in \mathcal{H}^{1}_{0}(\Omega)$ is the (variational) solution to $\begin{cases} -\Delta E^{\mathrm{sc}} - k^{2}E^{\mathrm{sc}} &= -k^{2}\mathbf{w} & \mathrm{in } \Omega, \\ & & & E^{\mathrm{sc}} &= 0 & \mathrm{on } \partial\Omega. \end{cases}$ (5)

The inverse problem as contrast source inversion

Let $\mathcal{R}_D: L^2(\Omega) \to L^2(D)$ be the restriction operator to $D \subset \Omega$.

Recall that $\chi = 1 - \varepsilon_r$ and $w = \chi E^{\text{tot}}$.

Operator formulation of the data and state equation :

$$\begin{split} E^{\rm sc}_{|D} &= f^{\rm data} \quad \Rightarrow \quad \mathcal{R}_D \circ \mathcal{L}_b(w) = f^{\rm data} \\ E^{\rm ref} &+ E^{\rm sc} = E^{\rm tot} \quad \Rightarrow \quad \chi \left(E^{\rm ref} + \mathcal{L}_b(w) \right) = w \end{split}$$

Inverse problem as contrast source inversion (CSI)

Let E^{ref} be the solution to (1) for given F.

For given measurements f^{data} on $D \subset \Omega$, find (χ, w) defined on Ω , such that

 $\begin{cases} \mathcal{R}_D \circ \mathcal{L}_b(w) = f^{\text{data}} & \text{[data equation]} \\ \chi \left(E^{\text{ref}} + \mathcal{L}_b(w) \right) = w & \text{[state equation]} \end{cases}$

Contrast Source Inversion (CSI) - State of the art

Seminal paper of van den Berg/Kleinman, Inv. Pb., 1997

- reconstruction of the complex refraction index of an object from surface measurements outside the object
- \Rightarrow scalar scattering problem in an unbounded domain
 - solution operator based on Green's function

Unbounded domain, MRI-EPT

- Balidemaj et al., IEEE Trans. Medical Imaging, 2016
- Arduino et al., Inv. Pb., 2018

Bounded domain - FEM

- Zakaria et al., Inv. Pb., 2010 (microwave imaging, Helmholtz equation)
- Arduino et al., IEEE Trans. Medical Imaging, 2021 (MRI-EPT)

<<p>(日) (日) (日)

Cost function

$$\mathcal{F}(\chi, w) = \mathcal{F}^{\text{data}}(w) + \mathcal{F}^{\text{state}}(\chi, w) \longrightarrow \min$$

with
$$\mathcal{F}^{\text{data}}(w) = \frac{\eta^{\text{data}}}{2} \| f^{\text{data}} - (\mathcal{R}_D \circ \mathcal{L}_b)(w) \|_{0,D}^2,$$

 $\mathcal{F}^{\text{state}}(\chi, w) = \frac{\eta^{\text{state}}}{2} \| \chi(E^{\text{ref}} + \mathcal{L}_b(w)) - w \|_{0,D}^2,$

for any $\chi \in L^{\infty}(\Omega)$ and $w \in L^{2}(\Omega)$ and normalization constants $\eta^{\text{data}} > 0$ and $\eta^{\text{state}} > 0$.

Two-step iterative method :

- update w_n by a gradient-based method $\rightsquigarrow w_{n+1}$
- update χ_n from knowledge of w_{n+1}

Adjoint solution operator

$$egin{array}{rcl} \mathcal{L}_b^* &:& \mathcal{H}^{-1}(\Omega) & o & \mathcal{L}^2(\Omega) \ & arphi & \mapsto & -k^2 p, \end{array}$$

where the adjoint state $p \in H_0^1(\Omega)$ is the variational solution of

$$\begin{cases} -\Delta p - k^2 p = \varphi & \text{in } \Omega, \\ p = 0 & \text{on } \partial \Omega. \end{cases}$$
(6)

Then $(\mathcal{R}_D \circ \mathcal{L}_b)^*$ is defined with the help of the extension operator $\mathcal{R}_D^* : L^2(D) \to L^2(\Omega)$ given by

$$\mathcal{R}^*_D(arphi) = \left\{egin{array}{cc} arphi & ext{on } D \ 0 & ext{on } \Omega \setminus \overline{D}. \end{array}
ight.$$

Computation of the gradient by the adjoint state

$$egin{array}{lll} \mathcal{F}^{ ext{data}}(oldsymbol{w})&=&rac{\eta^{ ext{data}}}{2}\|f^{ ext{data}}-(\mathcal{R}_D\circ\mathcal{L}_b)(oldsymbol{w})\|_{0,D}^2, \ \mathcal{F}^{ ext{state}}(\chi,oldsymbol{w})&=&rac{\eta^{ ext{state}}}{2}\|\chi(E^{ ext{ref}}+\mathcal{L}_b(oldsymbol{w}))-oldsymbol{w}\|_{0,D}^2, \end{array}$$

Formula for the gradient wrt w

$$egin{array}{lll}
abla_w \mathcal{F}^{ ext{data}}(w) &= -\eta^{ ext{data}} \, \mathfrak{Re} \left\{ (\mathcal{R}_D \circ \mathcal{L}_b)^*(
ho)
ight\} \
abla_w \mathcal{F}^{ ext{state}}(\chi,w) &= -\eta^{ ext{state}} \, \mathfrak{Re} \left\{ r - \mathcal{L}_b^*(\overline{\chi}r)
ight\} \end{array}$$

where $\rho = f^{\text{data}} - (\mathcal{R}_D \circ \mathcal{L}_b)(w)$ is the data error and $r = \chi(E^{\text{ref}} + \mathcal{L}_b(w)) - w$ is the state error which is taken into account only on the subdomain D.

Computation of the contrast function from given w

For a given contrast source w, the total field E^{tot} can be computed by

$$E^{\mathrm{tot}} = E^{\mathrm{ref}} + \mathcal{L}_b(w).$$

Then the contrast function

$$\chi = \frac{w}{E^{\text{tot}}} = \frac{w\overline{E^{\text{tot}}}}{|E^{\text{tot}}|^2}$$
(7)

satifies the state equation

$$\chi\left(\mathsf{E}^{\mathrm{ref}}+\mathcal{L}_{b}(\mathsf{w})\right)=\mathsf{w}.$$

<u>NB</u>: For χ defined from w and E^{tot} by (7), the state error $r = \chi(E^{\text{ref}} + \mathcal{L}_b(w)) - w$ vanishes. Thus,

$$abla_{\mathbf{w}}\mathcal{F}^{ ext{state}}(\chi,\mathbf{w}) = -\eta^{ ext{state}} \, \mathfrak{Re}\left\{\mathbf{r} - \mathcal{L}^*_{\mathbf{b}}(\overline{\chi}\mathbf{r})
ight\} = \mathbf{0}.$$

CSI Algorithm

Data : E^{ref} , k, f^{data} . Initial data : w_0 , χ_0 Initialization : compute $E_0^{\text{sc}} = \mathcal{L}_b(w_0)$ and initial direction $v_0 = -g_0$

Update :

- compute $\mathcal{L}_b(v_n)$
- compute optimal step α_n (explicit formula depending on $\mathcal{L}_b(\mathbf{v}_n)$)
- update contrast source : $w_{n+1} = w_n + \alpha_n v_n$
- solve direct problem : $E_{n+1}^{sc} = E_{n}^{sc} + \alpha_n \mathcal{L}_b(v_n)$
- compute total field : $E_{n+1}^{\text{tot}} = E^{\text{ref}} + E_{n+1}^{\text{sc}}$
- compute new contrast function χ_{n+1} from formula (7)

② Compute new residual and gradient :

•
$$\rho_{n+1} = f^{\text{data}} - E_{n+1|D}^{\text{sc}}$$

• $g_{n+1} = -\eta^{\text{data}} \Re e \{ (\mathcal{R}_D \circ \mathcal{L}_b)^* [\rho_{n+1}] \}$

Son-linear conjugate gradient (Polak-Ribière) direction :

•
$$v_{n+1} = -g_{n+1} + \frac{\langle g_{n+1}, g_{n+1} - g_n \rangle_D}{\langle g_n, g_n \rangle_D} v_n$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

First numerical results for synthetic electric field data

Line source field

$$j_s(\mathbf{x}) = \sqrt{I} \sum_{\ell=1}^{16} \frac{e^{ikr_\ell}}{\sqrt{r_\ell}}$$

Figure – Configuration of a birdcage coil

with intensity I and $r_{\ell} = \|\mathbf{x} - \mathbf{c}_{\ell}\|$ the distance to the center \mathbf{c}_{ℓ} of the ℓ th leg.

Figure – E^{ref} (without object, right), E^{tot} (with object, middle), E^{sc} (scattered field, right), P1 FEM - FreeFem++

First numerical results for synthetic electric field data

Reconstruction of a homogeneous circular object with relative permittivity $\varepsilon_r = 52.5 + 48.028i$ (white matter at 128 [MHz]).

Figure – Mesh for data generation (left). Mesh for CSI algorithm (right), \approx 2000 measurement points.

Reconstructed mean value of ε_r in the object : 51.98 + 47.26*i* $\rightsquigarrow \approx 1\%$ relative error for noiseless data

Figure – Noiseless data (left column). Noisy data with 0.5% (middle), 2% (right column). Upper line : real part of ε_r . Lower line : imaginary part of ε_r .

Realistic 2D head model

Relative Permittivity (-) 0.0e+00 20 40 60 8.5e+01

Conductivity (S/m) 0.0e+00 0.5 1 1.5 2.1e+00

Figure – Permittivity (upper line) and conductivity (lower line). Noiseless data. Ground truth (left). 5000 iter. (middle). 20 000 iter. (right).

What does MRI really measure?

MRI does not measure the electric field, but the B_1^+ -field related to the scattered magnetic field.

Maxwell's equations $(\mu_r = 1) \quad \rightsquigarrow \quad \operatorname{curl} \mathbf{E} = ik\mathbf{H}$

in 2D :
$$\mathbf{H} = -\frac{i}{k} \operatorname{curl} E = -\frac{i}{k} \begin{pmatrix} \partial_y E \\ -\partial_x E \end{pmatrix}$$
.

MRI measurements

$$B_1^+ \stackrel{\text{def}}{=} \frac{H_x^{\text{sc}} + iH_y^{\text{sc}}}{2}$$
 on D

Operator formulation of the data error with B_1^+ -data

Define linear operators ${\mathcal C}$ and ${\mathcal P}$ by

Then, the data operator \mathcal{S}^+ is defined from composition by

$$\begin{array}{rcl} \mathcal{S}^{+}: L^{2}(\Omega) & \rightarrow & L^{2}(\mathcal{D}) \\ & w & \mapsto & \left(\mathcal{R}_{\mathcal{D}} \circ \mathcal{P} \circ \mathcal{C} \circ \mathcal{L}_{b}\right)(w) \end{array}$$

The adjoint data operator

Data operator

$$\begin{array}{rcl} \mathcal{S}^+: L^2(\Omega) & \to & L^2(D) \\ & w & \mapsto & \left(\mathcal{R}_D \circ \mathcal{P} \circ \mathcal{C} \circ \mathcal{L}_b\right)(w) \end{array}$$

$$\mathcal{S}^{+,*} = (\mathcal{L}_b^* \circ \mathcal{C}^* \circ \mathcal{P}^* \circ \mathcal{R}_D^*) : L^2(D) o L^2(\Omega)$$

Let $\varphi \in L^{2}(D)$. Then, $S^{+,*}(\varphi) = -k^{2}p$ where p is the (variational) solution of $\begin{cases}
-\Delta p - k^{2}p = \frac{i}{k}\operatorname{curl}\mathbf{v} & \text{in } \Omega, \\
p = 0 & \text{on } \partial\Omega.
\end{cases}$ (8)

where

$$\mathbf{v} = \mathcal{P}^*(\mathcal{R}^*_D(\varphi)) = \begin{cases} \frac{1}{2} \begin{pmatrix} \varphi \\ -i\varphi \end{pmatrix} & \text{on } D, \\ \mathbf{0} & \text{on } \Omega \setminus \overline{D}, \\ \varphi \in \mathcal{P}^* \land \varphi \in \mathbb{R} \\ 0 & \text{on } \Omega \setminus \overline{D}, \end{cases}$$

Cost function for B_1^+ -data

$$\mathcal{F}(\chi, w) = \mathcal{F}^{\text{data},+}(w) + \mathcal{F}^{\text{state}}(\chi, w) \longrightarrow \min$$

with
$$\mathcal{F}^{\text{data},+}(w) = \frac{\eta^{\text{data}}}{2} \|B_1^{+,\text{data}} - \mathcal{S}^+(w)\|_{0,D}^2,$$

 $\mathcal{F}^{\text{state}}(\chi, w) = \frac{\eta^{\text{state}}}{2} \|\chi(E^{\text{ref}} + \mathcal{L}_b(w)) - w\|_{0,D}^2,$

Formula for the gradient wrt w

$$\nabla_{w} \mathcal{F}^{\text{data},+}(w) = -\eta^{\text{data}} \Re e \left\{ \frac{\mathcal{S}^{+,*}(\rho^{+})}{\mathcal{N}_{w} \mathcal{F}^{\text{state}}(\chi,w)} = -\eta^{\text{state}} \Re e \left\{ r - \mathcal{L}_{b}^{*}(\overline{\chi}r) \right\}$$

where $\rho^+ = B_1^{+,\text{data}} - S^+(w)$ is the data error for B_1^+ -data and $r = \chi(E^{\text{ref}} + \mathcal{L}_b(w)) - w$ is the state error (unchanged).

・ 同 ト ・ ヨ ト ・ ヨ ト

Implementation issues

Finite Element Solver

FreeFem

F. Hecht, J. Num. Math., 2012.

Choice of Finite Elements?

- Solution operator \mathcal{L}_b and its adjoint \mathcal{L}_b^* :
- \rightsquigarrow discretize $E^{\rm sc}$ and p by Lagrange Finite Elements of type P1
 - $\bullet~\mbox{Restriction/extension}$ operators \mathcal{R}_D and \mathcal{R}_D^* :
- \rightsquigarrow implement the subdomain $D\subset \Omega$ as a region
 - $\bullet\,$ Implementation of the adjoint curl operator \mathcal{C}^* :

A. Arduino et al., IEEE Trans. Medical Imaging, 2017. use Stokes' Theorem on a dual mesh and discretize $C^* v$ by Lagrange Finite Elements of type P1 with nodal values

$$(\mathcal{C}^*\mathbf{v})_I \stackrel{\text{def}}{=} \int_{G_I} \mathcal{C}^*\mathbf{v} \, dx = \frac{i}{k} \oint_{\partial G_I} \mathbf{v} \cdot \tau \, ds$$

Implementation of the adjoint curl operator

 \mathcal{C}^\ast is involved in the r.h.s. of the ajoint problem :

$$\begin{cases} -\Delta p - k^2 p = \frac{i}{k} \operatorname{curl} \mathbf{v} & \text{in } \Omega, \\ p = 0 & \text{on } \partial \Omega. \end{cases}$$

Variational formulation : Find $p \in H_0^1(\Omega)$ s.t.

$$a(q,p) = \langle q, \frac{i}{k} \operatorname{curl} \mathbf{v} \rangle_{H^1_0(\Omega), H^{-1}(\Omega)} \ \forall q \in H^1_0(\Omega),$$

where

$$a(q,p) = \int_{\Omega} \nabla q \cdot \nabla \overline{p} \, dx - k^2 \int_{\Omega} q \overline{p} \, dx \, \forall p,q \in H^1_0(\Omega).$$

$$< q, rac{i}{k}\operatorname{curl} \mathbf{v} >_{H^{\mathbf{1}}_{\mathbf{0}}(\Omega), H^{-\mathbf{1}}(\Omega)} = -rac{i}{k}\int_{\Omega}\operatorname{curl} q\cdot \overline{\mathbf{v}} dx$$

 \rightsquigarrow discretize p and q by Lagrange Finite Elements of type P1

Numerical results for B_1^+ -data

Table – Permittivity (upper line). Conductivity (lower line). Ground truth (left). Reconstruction after 40 (middle) and 100 (right) iterations. Refined mesh, $\approx 27~000$ measurement points.

*日 * * * * *

Conclusion and on-going work

- Reconstruction of EPs ε and σ in various academic and realistic configurations.
- Good performance for noiseless data and electric measurements.
- First step towards realistic B_1^+ -data.

 $|B_{1}^{+}|$

In (near) future

- (Multiplicative) regularization of CSI [cf. Balidemaj et al 2016]
- Phaseless data : $|B_1^+|$ instead of full B_1^+ data [cf. Arduino et al. 2018]
- Experimental data of a phantom [IADI, Nancy]

