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Generality

Guided wave applications:

dynamic analysis of elongated structures: Non
Destructive Evaluation (ultrasonic), noise and
vibration reduction...

our flagship application: NDE of bridge cables

potentialities:
– propagation over long distances
– sensibility to small damages Cable anchorage and 7-wire strand

Complexity of guided waves:

dispersive and multimodal propagation

dispersion curves required

modeling tools mandatory
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Energy velocity vs. frequency in a cylindrical bar

Three modeling issues:

propagation of waves

generation by a source

scattering by a local inhomogeneity
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Tool #1: propagation

SAFE method: (Semi-Analytical Finite Element)

1 variational formulation for 3D elastodynamics:∫
Ω
δϵTCϵdV − ω2

∫
Ω
ρδuTudV =

∫
Ω
ρδuTfdV

où ϵ = (Lxy + Lz∂/∂z)u

2 Fourier transform along z: û(k) =
∫ +∞
−∞ u(z)e−ikz

→ continuous symmetry incorporated

3 FE discretization of cross-section (x , y):

{K1 − ω2M+ ik(K2 − KT
2 ) + k2K3}Û(k;ω) = F̂(k;ω)

→ 2D problem, iteration over frequency ω

4 free response (F̂ = 0)
→ quadratic eigenvalue problem
→ solution = wave modes {km,Um} → linearized form:([

0 I
−(K1 − ω2M) −j(K2 − KT

2 )

]
− k

[
I 0
0 K3

])[
Û
kÛ

]
=

[
0
0

]

Remark: matrices can be complex (viscoelasticity, PML...)

From a 3D waveguide to its
2D SAFE mesh
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Tool #2: generation

K1, K3 et M are symmetric, (K2 − KT
2 ) is skew-symmetric

Biorthogonality

if km is an eigenvalue, then −km also
⇒ pairs of eigenmodes traveling in opposite direction {km,Um} and {−km,U−m}
the biorthogonality relationship can be written as:
iω
4

(
UT

mF−n − UT
−nFm

)
= Qm,−mδmn

with Fm = (KT
2 + ikmK3)Um (eigenforce vector)

Forced response:

1 modal expansion: Û(k;ω) =
+M∑

m=−M

β̂m(k;ω)Um(ω)

2 biorthogonality+residue theorem+time inverse FT:

U(z; t) = 1
2π

+∞∫
−∞

M∑
m=1

Em(ω)F̂(km;ω)e ikm(ω)z e−iωtdω

with Em = iω
4Qm,−m

UmU
T
−m (excitability of mth mode)
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Tool #3: scattering

Hybrid FE-SAFE method: a small FE box with transparent boundary conditions

u|Σ =
+∞∑

n=−∞
αnun, t|Σ =

+∞∑
n=−∞

αntn

1 FE model of the small box including the inhomogeneity:
δUT(K− ω2M)U = δUTF

2 Partitioning of dofs into cross-section Σ and internal region I :

U =

{
UΣ

UI

}
, F =

{
FΣ

FI

}
avec I = Ω \ Σ

3 Modal expansion of both UΣ and FΣ:

UΣ =
N∑

n=1
α−
n U−

n +
N∑

n=1
α+
n U+

n , FΣ =
N∑

n=1
α−
n F−n +

N∑
n=1

α+
n F+n

α±
n : outgoing/ingoing modal coeff. (unknown/prescribed)

N: number of modes kept (after truncation)

4 Linear system of the following form:

A(ω)x(ω) = B(ω)y(ω), with x =

{
α+

UI

}
and y =

{
α−

FI

}

FE-SAFE mesh
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Remarks

Remarks on biorthogonality:
’general’, in particular applicable to:

– non-propagative modes
– lossy waveguides (including PML)
– full anisotropy (including curvature)

nothing but the discrete version of Auld’s real relationship1

degenerates to more specific but well-known relations:
– Auld’s complex relation (applicable to real modes only)
– Fraser’s, JASA, 1976 (orthotropic materials only), foundation of X-Y formalism
– Herrera’s, BSSA, 1964 (surface waves in 1D stratified media)

1 Auld, Acoustic Fields and Waves in Solids, 1990

Remarks on hybrid FE-SAFE approach:

no specific hyp. (anisotropy, loss ok)

consequence of biorthogonality: A(ω) is symmetric

consistency:
– cross-section SAFE mesh: extracted from the FE box
– explicit expression of traction: the eigenforce Fm

error due to mode truncation:
– keep the least attenuated mode? a ’natural’ criterion:

e−|Im(k
±
n )d| < δ (d : distance damage-extremity)

– but not always relevant for open waveguides...
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Buried waveguides (collaboration/POEMS: PhD theses K.L. Nguyen 2011-14 + M. Gallezot 2015-18)

Waveguides coupled to an infinite surrounding
medium:

unbounded in the transverse direction

terminology: open waveguides
(as opposed to closed waveguides, in vacuum)

NDE of buried waveguides: minimize leakage

A more complex physics, with:

trapped modes, perfectly guided... a discrete set
often empty (depending on materials)

radiation modes... which form a continuous set

leaky modes, axially decreasing due to radiation
loss... but growing to ∞ in the transverse direction
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Exemples of open waguides in civil engineering (fully or partially buried)
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Free response: extension of tool #1

Method selection : SAFE+PML (perfectly matched layers)

1 PML = analytical continuation of transverse coordinates (x , y):

x̃ =
∫ x
0 γx (s)ds avec

{
γx = 1 if |x | ≤ dx
Im γx > 0 si |x | > dx

(same for ỹ)

2 change from complex to real coordinates:
x̃ 7→ x : ∂

∂x̃
= 1

γx

∂
∂x

, dx̃ = γxdx (same for ỹ)

3 PML truncation to a finite thickness (closed problem)

4 SAFE+PML method leads to:
{K1 − ω2M+ ik(K2 − KT

2 ) + k2K3}Û(k;ω) = F̂(k;ω)
– complex matrices due to γx , γy

– problem is ’definitively’ not self-adjoint

A rather easy implementation

but 3 user-defined parameters:
absorbing function γx (x), interface distance dx , thickness hx (same for y)
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Free response: example

Example: a steel cylindrical bar buried into a soft medium (concrete)

Dispersion curves:

SAFE-PML mesh, dispersion curves before filtering and after

Leaky mode vs.
PML mode

many ’PML modes’, non intrinsic to the physics...

an energy-based modal filtering: EPML/ETOT > threshold
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Free response: a closer look at spectrum

1D: influence of PML thickness and FE size:

average value of γ(x) inside the PML: γ̂

complex thickness: L̃ = d + hγ̂

thickness: h, FE size: ℓe h×2, ℓe h×2, ℓe/2

Spectrum λ = −k2, ◦: analytical leaky modes

2D: the homogeneous test case with mixed bc → analytical solution available

arg(L̃x ) ̸= arg(L̃y ) arg(L̃x ) = arg(L̃y )

PML modes lay inside 2 sectors,
’usually’ degenerating to 2 half-lines
as in 1D

rotation angles of half-lines ≃
−2 arg(L̃x ), −2 arg(L̃y )
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History break

PhD Khac Long Nguyen (2011-2015)

Papers:

Nguyen, K. L. and Treyssède, F. and Hazard, C., Numerical modeling of three-dimensional open elastic
waveguides combining semi-analytical finite element and perfectly matched layer methods, Journal of Sound
and Vibration 344 (2015), 158-178

Treyssède, F. and Nguyen, K. L. and Bonnet-BenDhia, A. S. and Hazard, C., Finite element computation of
trapped and leaky elastic waves in open stratified waveguides, Wave Motion 51 (2014), 1093-1107

Conferences:

Nguyen, K. L. and Treyssède, F. and Bonnet-BenDhia, A.-S. and Hazard, C., Finite element computation of
leaky modes in straight and helical elastic waveguides, 8th GDR US Conference, Gregynog (Wales), 2014

Nguyen, K. L. and Treyssède, F. and Bonnet-BenDhia, A.-S. and Hazard, C., Modélisation numérique des
guides d’onde ouverts : cas des structures élastiques courbes, 12ème CFA, Poitiers, 2014

Nguyen, K. L. and Treyssède, F. and Bonnet-BenDhia, A.-S. and Hazard, C., Computation of leaky modes in
three-dimensional open elastic waveguides, Waves, Tunis, 2013

Nguyen, K. L. and Treyssède, F. and Bonnet-BenDhia, A.-S. and Hazard, C., Computation of dispersion
curves in elastic waveguides of arbitrary cross-section embedded in infinite solid media, 13th International
Symposium on Nondestructive Characterization of Materials, Le Mans, 2013

Treyssède, F. and Nguyen, K. L. and Bonnet-BenDhia, A.-S. and Hazard, C., On the use of a SAFE-PML
technique for modeling two-dimensional open elastic waveguides, Acoustics 2012, Nantes

Treyssède, F. and Nguyen, K. L. and Bonnet-BenDhia, A.-S. and Hazard, C., Finite element computation of
elastic propagation modes in open stratified waveguides, 7th GDR US Conference, Oléron, 2012
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Forced response (tool #2): a numerical experiment

Example: steel cylindrical bar buried into a soft medium excited by a point force

Axisymmetric SAFE-PML model, PML parameters: γ̂ = 4 + 4i, h = 4a, d = a

Free response: 1 leaky mode, 0 trapped, 50 PML modes (low-frequency regime)

Forced response:
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Physics of open waveguides: 2D scalar toy model

Solution in the half-space:

u∞(x , z) =
1

2π

∫ +∞

−∞

a(k)

b(k)
e iα∞xe ikzdk

with α∞ = ±
√

ω2/c2∞ − k2: multi-valued
z

x

Residue theorem for z > 0:

u(x , z) =
∑

trapped modesa︸ ︷︷ ︸
poles of proper sheet

+

∫
Γ+

radiation modes︸ ︷︷ ︸
branch cut contribution

a Trapped modes do not exist if c0 > c∞, i.e. for our usual configuration...

Riemann surface for α∞ Proper sheet Im(α∞) > 0

Riemann sheet to get
∫
C+ → 0: Im(α∞) > 0

Im(α∞) = 0: discontinuity (branch cut)

Re(k)

Im(k)

Integration path, Γ+: branch cut
•: poles of proper sheet (trapped)
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Physics of open waveguides: 2D scalar toy model

With an infinite PML and cst γ(x) = γ :

u∞(x , z) =
1

2π

∫ +∞

−∞

a(k)

b(k)
e iγα∞xe ikzdk

with α∞ = ±
√

ω2/c2∞ − k2: multi-valued
z

x

Residue theorem for z > 0:

u(x , z) =
∑

modes piégésa +
∑

revealed leaky modesb︸ ︷︷ ︸
poles such that Im(α∞) < 0 !

+

∫
Γ̃+

radiation modes︸ ︷︷ ︸
new branch cut contribution

b Leaky modes are a good approximation of the initial continuum near the core

Riemann surface for α∞ New sheet Im(γα∞) > 0

Riemann sheet to get
∫
C+ → 0: Im(γα∞) > 0

Im(γα∞) = 0: discontinuity (branch cut)

Re(k)

Im(k)

Branch cut rotation by the PML
▲: poles of the improper sheet (leaky)
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Back to elasticity and numerical modeling

Elasticity is more complex than with scalar wavefields:

compressional + shear waves ⇒ 2 transverse wavenumbers, 2 branch cuts
⇒ 2 continua of radiation modes, 4 Riemann sheets
presence of ’backward’ leaky modes: in the proper sheet...

Numerical modeling requires PML truncation to a finite thickness:

discretization of continua = discrete set of ’PML modes’
u(x , z) =

∑
trapped +

∑
revealed leaky +

∑
’PML modes’(?)

Do PML modes have any physical contribution?

they are not intrinsic to the physics (depend on user-defined parameters)
they quickly diverge as their order increases (’spurious modes’)

Re(k)

Im(k)

Re(k)

Im(k)

Viscoelastic (left) spectrum vs. elastic (right)
→ only 2 sheets revealed in the elastic case
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’Divergence’ of discrete set of PML modes
(dashed: PML theoretical branch cut)
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Forced response (tool #2): the homogeneous test case

Example: fully homogeneous medium excited by point force pulse (analytical solution
available) → no discrete mode, only bulk waves!

Axisymmetric SAFE-PML model of a homogeneous elastic medium
complex thickness d + γ̂h = d + (4 + 4i) × 4d

Free response: no trapped, no leaky, 50 PML modes

Forced response:
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P-wave far-field

near-field term

uz (r = 0) as a function of time at z = 175d
SAFE-PML (red) and analytical solutions (blue)

The exact geometrical decay, eikr/rα, can
be reassembled from the sum of PML
modesa, exponentially decaying (eikmz )

a a proof in scalar waveguides: Olyslager, SIAM J. Appl.
Math., 2004

Now, let us go back to our initial
experiment...
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Scattering (tool #3)

PML

z
V : arbitrary FEM-PML volume Undamaged 

open waveguide

(analytical propagation)

Undamaged 

open waveguide

(analytical propagation)

Incident waves Reflected waves Transmitted waves

defect

: arbitrary cross-sections

(transparent B.C. with modal decompositions)

Scattering in buried waveguides: hybrid FE-SAFE method with PML

Scattered field by a 3D crack inside an open waveguide (PML-closed)
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Scattering (tool #3): numerical experiment

Example: scattering by elliptical crack in a viscoelastic steel cylindrical bar buried into
cement grout (softer medium → no trapped modes)
Incident modes: low-frequency L(0,1) vs. high-frequency L(0,12)
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FE box size vs. near field effects and PML modes

Any contribution of PML modes?

Low-frequency L(0,1) incident:

|zi − zref| = 1a, 13 leakya

|zi − zref| = 0.25a, 13 leakya

|zi − zref| = 0.25a, 13 leakya

+27 PML modes

a including forward and ’backward’ modes
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modes (triangle). Color: transmission coeff. (hn/a = 0.8)
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FE box size vs. near field effects and PML modes

Any contribution of PML modes?

Low-frequency L(0,1) incident:

|zi − zref| = 1a, 13 leakya

|zi − zref| = 0.25a, 13 leakya

|zi − zref| = 0.25a, 13 leakya

+27 PML modes
a including forward and ’backward’ modes
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PML mode contribution can be
significant in the near field:
a trade-off between FE box size
and number of PML modes
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Orthogonality... or not

Biorthogonality: Qm,−n = jω
4
(FT

−nUm − UT
−nFm) = Qm,−mδmn

Power non-orthogonality: the net power through cross-section Σ can be written as

ΠT =
N∑

m=−N

|αm|2Re(Pm,m)+
N∑

m=−N

∑
n ̸=m

α∗
nαmPm,n where Pm,n =

jω

4
(F∗

nUm−U∗
nFm)

with Re(Pm,m): power of nth mode, Pm,n: modal cross-power
In lossy problems, Pm,n ̸= Qm,−n → ’power non-orthogonality’

Consequence: individual power coefficients can be > 1, R and T can both increase...
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Conclusion

Using PML for the numerical modeling of open waveguides:

leaky modes: revealed in a natural way (approximating the radiation continua)

biorthogonality holds for any type of modes: including leaky! ((((((((
transverse growth)

PML modes as a sum: physically meaningful (geometrically decaying field)...

... can be non-negligible in the ’deep’ far field or in the ’close’ near field

open issues: completeness of expansion (convergence)?
unicity of excitability (Qm,−m is a ’PMLized norm’)?...

Main drawbacks in practice:

PML parameters are user-defined

computation time increases due to many PML modes for only a few leaky: what
computational strategies?
→ an option to accelerate iterations over frequency? Treyssède, “A model reduction method

for fast finite element analysis of continuously symmetric waveguides”, JSV 508 (2021)

Modeling a buried seven wire strand: SAFE-PML mesh (left), energy
velocity dispersion curves (middle) and attenuation (right)

Modeling a buried elastic
sphere (gallery waves)
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Influence of PML parameters on error vs. distance

Error vs. distance: e(z) =

√ ∫
|urefz (z,ω)−unumz (z,ω)|2dω∫

|urefz (z,ω)|2dω
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Relative error as a function of the propagation
distance. γ̂ = 4 + 4j . h = 4d , M = 50 ; h = 4d ,

M = 30 ; h = 3d , M = 50.
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Figure: Influence of the argument for a complex
thickness 25e jθ : θ = 20◦ (orange), θ = 30◦

(blue), θ = 45◦ (black), θ = 60◦ (red), θ = 70◦

(green).
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Scattering validation test case

Reflection of L(0,1) mode by the junction of a steel bar with an infinite surrounding
medium (epoxy)
Reference solution: Vogt et al., JASA 2003 (FE element modelling + mode-matching)

Number of modes:

M = 1 on Σ1: L(0,1) guided mode

M = 10 on Σ2: L(0,1) leaky mode + 9 PML modes

z2

a d

h

z1

(+)

(-) (+)

PML
r

r = 0

Validation test case (z1 = z2 = 0.25a). PML
parameters: d = 1.05a, h = 2a, γ̂ = 4 + 4i

(mean attenuation).
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Red: reference results, blue: hybrid FE-SAFE.
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